
Software Configuration Management in an Object Oriented Database

Mick Jordan
mjj@Eng.Sun.COM

Michael L. Van De Vanter
mlvdv@Eng.Sun.COM

Sun Microsystems Laboratories
2550 Garcia Avenue

Mountain View, CA 94043 USA

se
-

he
’s,
ith
ny
re
in
es

to-
ct-
by

as
w
xt
ur
w

n.
e

in
.
a-
our

e
ite
lu-
n-
-
is
g

up-
d
t
is
f

USENIX Conf. on Object-Oriented Technologies (COOTS), Monterey, CA, June 26-29, 1995
Abstract

The task of configuration management for software
development environments is not well supported by con-
ventional files, directories, and ad hoc persistence mech-
anisms. Typed, immutable objects combined with
ubiquitous versioning provide a much more sound basis.
A prototype configuration management system cur-
rently under development relies upon persistent objects
provided by a commercial object-oriented database sys-
tem. Mechanisms and policies developed for this proto-
type simplify programming with persistent objects;
results include simplicity of both design and implemen-
tation, as well as flexibility, and extensibility. Initial
measurements suggest that performance is acceptable.

1 Introduction

A practical software system consists of hundreds or
thousands of separate but related components. A soft-
ware development environment (SDE) must help man-
age this collection by providing configuration
managementservices. Closely related isversion man-
agement, often associated with tracking the evolution of
individual components. However, configurations natu-
rally exist as versions, and it is the effective manage-
ment of such configurations that distinguishes a truly
useful SDE for large, multi-user projects.

An SDE typically relies on the persistent storage facili-
ties provided by the underlying operating system, usu-
ally in the form of a file system with two basic
mechanisms: files and directories. Unfortunately the
weak functionality of these primitives does not permit
adequate modelling of configurations. This has led to
the suggestion that an SDE rely instead on a database
management system (DBMS) [1].

Experience with SDEs built using traditional DBMS
technology has not been encouraging. Indeed such sys-
tems have acquired a reputation for being resource hun-
gry, and they have not found their way into widespread
use. However, in recent years there has been a surge of

interest and development in object-oriented databa
(OODB) technology. While the relational database com
munity might argue that OODBs are fated to repeat t
perceived failure of the network databases of the 1970
there is no doubt that the better impedance match w
everyday programming has a great appeal to ma
developers. Indeed one can argue that OODBs a
becoming successful because they are delivering,
part, the promise of persistent programming languag
[2].

This paper describes our experience building a pro
type configuration management system using Obje
Store® [3], a commercial database system produced
Object Design Inc.®

We begin by reviewing the advantages of an OODB
infrastructure for an SDE and then provide an overvie
of the essential facilities provided by ObjectStore. Ne
we briefly describe the structure and operation of o
configuration management system and explain ho
objects help simplify both design and implementatio
We then turn to the mechanisms and policies that w
have developed to exploit ObjectStore successfully
our prototype, many of which have wide applicability
After presenting some preliminary performance me
surements we describe related work and discuss
conclusions and future plans.

2 Why a Database?

Traditionally an SDE is built on top of a file system. Th
inertia caused by existing file-based tools makes it qu
difficult to change this situation, and any database so
tion must provide a way to integrate legacy tools. Mea
while progress in tools continues, and the limits of file
based systems are being pushed. In particular, it
increasingly common to find ad hoc “databases” bein
added to file based SDEs. Examples include data to s
port browsing, C++ [4] template instantiation, and buil
state formake [5]. Managing these ad hoc persisten
stores, particularly in the face of concurrent access,
difficult and error prone. Yet, there is no shortage o



t

ll-
is

is
se

fer-
ps
the
s
in

any
ot
ss
iple

n,
m
is
ent.

n.
te
ck,
the
s

-
ad-
d
m

ac-

ed
ar-
n

ta-
ated
ate
nd
i-

ses
ain
ate
es
o-
object-based systems offering solutions, for example
CORBA [6] and Microsoft OLE 2 [7]. However,
although these systems provide varying degrees of sup-
port for persistent data, they currently do not scale to the
task of supporting an SDE efficiently. In contrast,
OODBs have matured to the point that we believe it is
practical to deploy them as an alternative to file systems
and ad hoc persistence mechanisms.

An OODB offers two main advantages over a file sys-
tem as infrastructure for an SDE:

• A transactional store, and
• Precise modelling of application data.

2.1 Transactional Store

All updates to a database take place inside a transaction;
they either complete in their entirety or not at all. There-
fore the evolution of data in a database proceeds through
a sequence of well-defined states. Furthermore, data
modified in a transaction by one process is not visible to
other processes until the transaction commits. Providing
such a guarantee for a file-based system is substantially
harder.1 While the transactional property might be seen
as a minor feature in a single user programming envi-
ronment, it is extremely important in large, multi-user
projects. Even in single user environments, the use of
multiple processes can easily put data into an inconsis-
tent state, for example should a process abort at an inop-
portune moment.

2.2 Precise Data Modelling

We believe that the capability to design objects that
closely model the application domain is the more signif-
icant benefit of an OODB. File based systems are ham-
pered by the performance and modelling discontinuities
that occur at the file and directory boundaries. An
OODB can provide a more consistent solution. In partic-
ular, there are substantial advantages to be gained from
utilizing fine-grain objects: objects too small to be
stored efficiently as individual files. That all objects are
also typed, significantly improves the readability and
reliability of programs that manipulate them. Traditional
solutions to storing fine-grain objects in a file system
involve pickling schemes [8] [9], whereby programming
language objects are preserved in some way inside one
or more files. Although this can work well for simple
structures, it rapidly becomes unwieldy for the complex,
linked structures that prevail in compilers and associated
tools [10].

3 ObjectStore

ObjectStore is a commercially available OODB tha
runs underUNIX® and Microsoft® Windows. It is prima-
rily targeted to the C++ language, but support for Sma
talk [11] has been added recently. Our experience
with the C++ system for the Solaris® variant ofUNIX®.

The impedance match between ObjectStore and C++
generally very good. Objects are allocated in a databa
by overloaded variants of the C++operator new.
In consequence all objects in the database can be re
enced by C++ pointers. ObjectStore transparently ma
portions of the database into the address space of
C++ process, using virtual memory mapping primitive
of the underlying operating system. Access to objects
the database must occur inside a transaction, and
pointers that are mapped within that transaction are n
valid after it terminates. Multiple processes may acce
the same database, and ObjectStore enforces a mult
reader-single writer locking policy.

Within these constraints, and inside a transactio
manipulation of database objects is no different fro
manipulating virtual memory (heap) objects, and it
this feature that makes use of the database transpar
However, to avoidlock conflictswith other processes it
is necessary to limit the time spent in each transactio
A lock conflict occurs when one process holds a wri
lock and another process requests a read or write lo
or vice versa; this delays the requesting process until
lock is relinquished. Since locks are acquired only a
data is accessed,deadlockcan occur when access pat
terns produce cyclic lock dependencies. In case of de
lock one transaction is automatically aborted an
subsequently retried up to a user-defined maximu
number of times.

In order to retain access to an object between trans
tions, it is necessary to use an ObjectStorereference: a
kind of heavyweight pointer. Unless some care is us
to minimize the use of references, much of the transp
ency is lost. We will discuss this issue in more detail i
section 5.4.

ObjectStore is based on a client-server model. Da
bases are managed by a server process on a design
server machine. Client processes, typically on separ
machines, communicate with the server to read a
write data. Client-side caching is heavily used to min
mize communication overhead.

A process can access multiple ObjectStore databa
within a transaction, and database objects can cont
references to objects in other databases. An upd
transaction that modifies data in multiple databas
managed by different servers is implemented by a tw1. A transactional file system would provide such a guarantee.



an

s
as-
e
o
em
.

e-

be
A
-
ta-
in
ed

-

y

-
in
in

ly.
phase commit protocol.

We currently do not use ObjectStore’s other features,
such as querying, collections library, and generic ver-
sion management. Our primary interest is in exploiting
the shared, distributed, and transacted virtual memory
model provided by the basic infrastructure.

4 Configuration Management in Forest

Our configuration management system is part of a larger
project, Forest, that aims to provide an integrated, multi-
user, software development environment for medium to
large scale systems programming. A major goal of For-
est is to discover whether current OODB technology is
up to the task.

The goal of the configuration management system is to
support the precise specification of a software system
that may occur in many versions and variants. It must be
capable of dealing with a spectrum of object types, from
very small objects that might represent a fragment of a
source program through to structured objects that might
represent a complete system build containing thousands
of objects. Intermediate in this spectrum are objects that
represent object modules, programs, etc. In file-based
systems the structure of these kinds of objects is typi-
cally defined by afile format. In object-based systems
we expect such objects to be defined increasingly as
abstract object types.

Figure 1 suggests how services are provided by different
architectural layers of the prototype.

4.1 Components

Since the term object is rather overloaded, we use the
term componentto denote the objects that are manipu-
lated by the Forest configuration management system.
Although ObjectStore can store instances of any C++

type, we restrict components to be a subclass of
abstract C++ classComponent , which defines a com-
mon set of operations and attributes.

It is possible to construct arbitrarily complex collection
of components, connected in an OODB, much more e
ily than one can with a file system. In practice, w
enforce some familiar high level structure, partly t
meet the goals of the configuration management syst
and partly for administrative and engineering reasons

4.2 Projects

Components are allocated in and belong for their lif
time to a project. A project physically groups related
components and, as the name implies, is intended to
shared by a group of collaborating programmers.
project is similar to a disk volume or mounted file sys
tem and is implemented as a single ObjectStore da
base.1 Components in one project may refer to those
another, but only through special components call
links.

At the outer level a project looks very like a conven
tional file system. A rootfolder (analogous to a file sys-
tem directory) can contain other folders or arbitrar
components. Two particular component types,Package
and BuildableFolder, are the essence of the configura
tion management system; we will now describe these
more detail. Figure 2 suggests how these are related
practice.

ObjectStore
Persistent, typed objects
Transactions

Components
UID
Value Equality
Garbage Collection

Packages
Versioning

BuildableFolder
Container Editing
System Modelling

Figure 1. Architectural Layers in Forest

1. We use the terms “project” and “database” interchangeab

Package

Project (Root) Folder

Package
Version

BuildableFolder

Component
Import

Folder Folder

Package

Version

Version
Version

Version

Version

Version

...

BuildableFolder

Component

...

Figure 2. Abstract Example of a Forest Project



-
ut
of

rs.

e
y
nal

e-

is
ra-
it-
ilt.
n

ta-
of

is
s
r.

r-
ds
e

m-
ge
nts
at

d by
ay
are

re-

a

an-
er
d
e
a-
e
be

e-

od-
4.3 Packages and BuildableFolders

Forest follows the Vesta [12] approach to configuration
management. A project contains a collection of hetero-
geneoussource components, organized into families
calledpackages, each of which is arranged into a tree of
versions. Source components are so-called because they
cannot be generated automatically by the system. Users
typically create source components using tools such as
editors. However, a binary program that is imported into
the database from elsewhere is also a source component
in this context. All other components, i.e. those that can
be generated automatically by the system, arederived.
Components, once created, are immutable. Tools used to
construct derived components are themselves modelled
as components and versioned in the same way. Systems
are built by executing a functional program in asystem
modellinglanguage. These properties provide the basis
for reliable and repeatable system builds.

Unlike Vesta, in which the package structure is hard-
wired, a Forest package is just a particular subtype of
the Component class. The operations available on a
package are specified as ordinary C++ methods, and
each executes as a transaction. A package version can
bind any subtype ofComponent , although to date we
have not exploited this flexibility. Variations of the pack-
age type could be defined (for example to implement
different organizations of versions), as indeed could
quite different structures, and all could coexist in the
same database. This flexibility and extensibility is one
of the clear benefits of the OODB approach.

Following Vesta, the component type that we currently
bind to a package version is a special kind of container
that we call aBuildableFolder . This is similar to a
file system directory, in that it contains a set of heteroge-
neous (source) components. However, it also plays a key
role in the system building process in that it is alsoinput
to the system builder. In this role aBuildable-
Folder acts as a module in the system modelling lan-
guage. The source components act as constant values
that are the inputs to the algorithm that computes
(builds) the system. Large systems are built up by con-
necting package versions together using animport
mechanism. The essential feature of the import mecha-
nism is that it is not intensional; eachBuildable-
Folder precisely and permanently identifies the other
folders that it imports. The details of the system model-
ling process are beyond the scope of this paper; the
mechanisms are similar to those described for Vesta, but
the details are rather different.

Development typically proceeds by the userchecking
out the latest version of a package. This produces a new
branch on the version tree and a newBuildable-

Folder, which initially shares the components con
tained in the folder that was the subject of the checko
operation. The package components, which can be
arbitrary type, are then evolved by appropriate edito
We use the termevolvedrather thanmodifiedto empha-
size that any editing must take place on copies. W
expect editors to exploit the immutability provided b
the system and share as much as possible of origi
components when constructing copies.1

Coordination of component editors is overseen by a sp
cial editor for a BuildableFolder; this editor
ensures, amongst other things, that the entire folder
saved as a group, thus versioning the entire configu
tion. Once a version is saved, which involves comm
ting any new components to the database, it can be bu
Therefore, it is important that the group save operatio
be fast, in user time, and our experience with the da
base is positive in this regard. Eventually a version
this checkout branch, usually the last, ischecked inby
creating a new version on the main branch. Th
involves no copying or building, since it merely serve
to associate a new version name with the same folde

4.4 Fine-grain Components

Some components in aBuildableFolder have
internal structure that is made visible through the inte
face to the component. Since this structure correspon
to the sub-file granularity in a file-based system, w
refer to such components asfine-grain. Most current
program editors are text-based, so typical source co
ponents are not structured, but we expect this to chan
as object-based systems and compound docume
become more widespread. In contrast, it is somewh
easier to represent derived components, those create
tools during a system build, as structured objects by w
of wrappers and similar techniques. In Forest, these
defined as appropriate subtypes of theComponent
class, tailored to model the abstract objects they rep
sent.

For example, we specify the input to the parser for
programming language as aTokenSequence compo-
nent that represents a sequence of tokens in that l
guage. This component might be produced by a lex
from a text component or it might be manipulate
directly by a language sensitive editor. Either way, th
parser, as well as all downstream tools in the compil
tion pipeline, are only interested in the elements of th
token sequence, and are unconcerned that it might
derived from or be part of another component. This pr

1. This assumes that components are structured so that unm
ified substructure is shareable.



the
ec-
will
o-
e
e
e
d

or
ed
ts.
s
xt

c-
n-
t,
c-

o-
ms
at-

he
ed

n
ct
is

ata
s

re

d,

ase
r-
ns-
be

n-
a
t-
if-
lso
cise modelling of the compilation pipeline provides
opportunities to avoid certain phases. For example, a
change to a comment or other annotation, such as a
graphic, in the original source component, would only
require re-lexing.

4.5 Uids and Abstract Values

Two particularly important attributes of a component are
its uid and itsvalue. Each component is assigned a glo-
bally unique identifier (uid) that denotes it for all time.1

The uid acts much like a pointer or reference in a pro-
gramming language. Forest uids are 128 bits wide, part
of which encodes the database in which the component
is allocated. The uid provides a guaranteed way to iden-
tify a component, in contrast to the facilities offered by
theUNIX file system. The uid also provides a sure way to
determine if two references are to the same object.

However, uid comparison sometimes draws too fine a
distinction. Two components with different uids may in
fact represent the same abstract value, for example the
same sequence of tokens in theTokenSequence
component of the previous section. The abstract value
attribute is represented by afingerprint [13]. A finger-
print is an opaque bit sequence, similar to a hash code,
that encodes value probabilistically. Two components
with the same value have the same fingerprint. Con-
versely, if two components have different values, then,
with extremely high probability, they have different fin-
gerprints.2 Each component implementation can provide
its own definition of the value attribute; the default,
inherited, implementation uses the uid, which is safe but
conservative. Fingerprints can be combined efficiently,
which is how the abstract value of structured compo-
nents is computed. Component implementations are free
to cache the fingerprint or compute it on demand. The
system builder deals with components through their
abstract values because, in the system modelling lan-
guage, object equality is defined as equality of abstract
values.

4.6 Copy or Share?

The combination of immutability and abstract value pro-
vides many benefits, not least the freedom to copy or
share components at will. For example, a system that is
built in a database at a developer site can be copied to a
database at a client site. Provided that client and devel-

oper share the same environment with respect to
dependencies of the copied system, no rebuilding is n
essary because, even though the copied components
have different uids, the abstract values of the comp
nents will not have changed. If, on the other hand, th
client uses a different version of the compiler, then th
affected components will be rebuilt transparently; th
system takes full responsibility for the construction an
location of derived components.

The ability to share components reliably has two maj
benefits. First, it permits components to be construct
as incremental modifications to existing componen
This is similar to the way in which versioning system
such as RCS [14] use “diffs” to encode changes to te
files, but it differs by being proactive rather than retroa
tive. In addition, arbitrary component types can be co
structed incrementally in the Forest environmen
leaving details to component implementations. The se
ond benefit is the ability to share large derived comp
nents such as programs, libraries, or entire subsyste
among many versions and many users. This can dram
ically reduce overall storage requirements, making t
system competitive or better than current file-bas
environments.

5 Storage Management and Locking

We turn now to the implementation of the configuratio
management system, and in particular to the impa
ObjectStore has on the Forest/C++ programmer. This
felt in two main areas: storage management and d
locking. We will describe the mechanisms and policie
that we have developed to minimize this impact.

5.1 Allocation Mechanisms

As noted earlier, objects are allocated in an ObjectSto
database using overloaded variants of the C++opera-
tor new . The C++ language permits optionalplace-
ment arguments tonew; ObjectStore uses these to
control where in the database an object is allocate
using two basic placement abstractions:segmentsand
clusters.

Segments support large scale structuring of the datab
and provide hooks for various policies to improve pe
formance. For example, whole segments can be tra
ferred from the server in one request. Segments can
of unlimited size.

A segment can be divided into clusters, which are esse
tially abstract pages. A cluster has a minimum and
maximum size, the minimum being one page. Objec
Store’s locking is actually page-based, so objects in d
ferent clusters cannot cause lock conflicts. Clusters a

1. In principle the uid could change, provided the change
appeared atomic to all clients, but the difficulty in locating
all references makes this impractical.

2. The probability can be increased by adding more bits to the
fingerprint representation; we use 64.



So
k-
be
e

ce
nd

it
g-
e
be
rs

ss
o-

ata

re-
a

hot
ly,

ill

on-
he
ms.
for
in
u-

tor

a
id

t,

or-
o-
on

nd
ow

e
y
a

ra-
provide for locality of reference for groups of small
objects. Since clusters have a maximum size, a client
must always be prepared for an allocation request to fail,
requiring the cluster to be extended or a new one to be
allocated. Objects larger than the maximum cluster size
cannot be allocated in a cluster at all.

It would be unworkable for each allocation site to deal
with all these issues, so in Forest we abstract placement
data into a C++ class calledDBNewPlace . Although
this successfully encapsulates the ObjectStore place-
ment information, a client must still acquire or generate
an instance of this class in order to allocate any objects.
Fortunately ObjectStore provides enquiry methods that
return the cluster or segment in which an existing object
is allocated. Provided such an object is at hand, it is easy
to generate aDBNewPlace that will cause allocation
with the same placement. In practice, almost all objects
are associated with some container object, and alloca-
tion with the same placement as the container is usually
the right thing to do. Since such allocations typically
take place inside a method of the container object, the
C++ this pointer can be used to generate the place-
ment. In cases where athis pointer is not available,
such as static member functions, aDBNewPlace
instance must be passed as an explicit argument.

5.2 Allocation Policy

The DBNewPlace class provides the mechanism for
abstracting the placement information, but who provides
the policy? Our experience bears out Object Design’s
advice: unless this is carefully planned, lock conflicts,
poor locality of reference, and consequent inadequate
performance are inevitable.

The versioned, mostly immutable nature of a Forest
database is of considerable help in establishing appro-
priate policy. By design, conflict can only occur on the
mutable components that represent the leading edge of
development. Recall that development by an individual
user takes place on a package. Often two or more pack-
ages may be involved, for example a package that pro-
vides a library of code and an application package
which uses the library. Different individuals will typi-
cally be working on different packages, ultimately inte-
grating their work by way of packages that denote
subsystems.1

Each Forest package is allocated in a separate segment,
so all source components in all versions of the package
are allocated together. Lock conflicts thus cannot arise
from modifications to different packages. In addition,
when a particular version of a package is built, all new

derived components are allocated in a fresh segment.
concurrent builds of different versions of the same pac
age also cannot conflict. Should two programmers
working on different branches (versions) of the sam
package, conflict can occur while creating new sour
components. However, this happens in user-time, a
the lock is only held for the time it takes to write the new
component. If such conflicts proved to be problematic,
would be relatively straightforward to allocate extra se
ments, for example, for each version branch. Only th
code that creates new package versions would
affected by this change; editors and other mutato
would simply inherit the appropriate placement.

Owing to the size constraints, we find clusters much le
useful than segments; we use clusters only for comp
nents whose size we can predict with confidence.

5.3 Uid Generation

The most significant hot spot in the database is the d
structure that deals with uids. At a minimum thenext-
uid value must be updated each time a component is c
ated. The data structures that provide a mapping from
uid to the associated component are also potential
spots. Evidently this data must be clustered separate
otherwise read-only navigation of the database w
immediately conflict with mutating.

In fact, as the measurements in section 7 show, the c
flicts that arise when multiple processes are mutating t
database quickly cause serious performance proble
To address this problem we have made it possible
uid generation to be distributed amongst components
the database. Rather than hard-wire a particular distrib
tion, any component type can opt to be a uid-genera
by inheriting and implementing theUidGenerator
interface. This interface defines a protocol that permits
hierarchy of components to collectively manage the u
space in one database.

Initially the only uid generator is at the root componen
which also serves as the entry point to a database.2 A
component can register with the root and acquire a p
tion of the uid space that it then manages. Any comp
nent can be asked for its uid-generator. Since allocati
and uid generation go together, we extend theDBNew-
Place class to carry both the database placement a
uid-generator instance. There are no constraints on h
a component implements theUidGenerator inter-
face; the protocol provides for the enumeration of th
components under its control. In principle this hierarch
could be of any depth. In practice, we have only used
depth of two, by making each package be a uid gene

1. Vesta coined the termumbrella package for this purpose. 2. It acts like “/ ” in the UNIX file system.



e a
res
ry
an
g

-

fur-
-

ed,

e-
pe
y

is
nd

he
-
ces
tract
s
d.
nt

ve-
of
on-

f
ol
le

h
ot
-
nt
ch
to

ol
n-

n,

me
tor that registers with the root component.

The contention caused by the uid structures could be
avoided by binding our implementation more tightly to
ObjectStore, since each persistent C++ object has a
unique persistent address.1 However, an initial goal of
the project was to avoid too much dependence on imple-
mentation details of any one database, hence our own
uid layer. Since the uid representation is hidden from
Forest clients, we should be able to perform this optimi-
zation in the future. Nevertheless, the uid structure is
just a particular example of anindex, which occur
repeatedly in database applications. A consequence of
the distributed shared memory model is that such indi-
ces are certain hot spots if the update frequency is high.

5.4 Locking

Careful clustering and distributed uid generation does
much to alleviate the potential for lock conflicts in For-
est, but it does not permit the programmer to ignore the
issue completely. In particular, any process that involves
user-interaction or indeterminate delay cannot be under-
taken inside a transaction without the risk of locking out
another process. In Forest, this issue manifests itself
most obviously in the user interface to the configuration
management system. Much user activity involves
browsing the package structure, using read-only transac-
tions, with occasional bursts of editing and building that
require update transactions.

In order to avoid holding a read lock that might prevent
an update, user-interface code must use short transac-
tions for database navigation. Pointers that represent
navigational context must be converted to ObjectStore
references, which were alluded to in section 3. Object-
Store provides a variety of reference types, with varying
costs and functionality. All are represented in C++ as
template types and behave likesmart pointersto the real
object type. For the most part this fiction succeeds, but
the C++ type system sometimes falls short. For exam-
ple, if B is a derived class ofA, then aB* is assignable
to anA* . However, there is no such relation between a
DBRef<B> and aDBRef<A>, whereDBRef<T> is a
reference to a typeT.

One particular trap for the unwary involves closing a
transaction within a method of an object whosethis
pointer becomes invalid when the transaction ends. This
is analogous to sawing off the branch on which one is
sitting. The solution is to use functions or transient
objects to scope transactions.

5.5 How much to Store Persistently?

One reason that database-based environments hav
reputation for storage excess is that the data structu
associated with compilers and related tools can be ve
large. A good example is a program represented as
Abstract Syntax Tree (AST). Another is the debuggin
information in typicalUNIX object files.2

Forest solves this problem with two distinct mecha
nisms:

• Separation of interface and implementation; and
• Aggressive sharing of substructure.

The second mechanism, discussed earlier, deserves
ther emphasis. The intrinsic immutability of Forest com
ponents enables common structure to be shar
confident in the knowledge that it cannot change.

The value of physically separating interface and impl
mentation is well understood in the abstract data ty
programming communities. In the C++ communit
physical separation by way of abstract base classes
uncommon, perhaps because of efficiency concerns a
poor language and compiler support.3 In a database con-
text, efficiency concerns are clearly secondary to t
flexibility that abstract interfaces provide. Forest com
ponents are defined and accessed through interfa
defined as C++ abstract base classes. These abs
interfaces show no implementation detail: all method
are pure virtual, and no data members are permitte
The implementor enjoys complete freedom to represe
the abstract state of the component in the most con
nient way. The actual implementation takes the form
a class that is derived from the abstract class and c
tains the physical data members.

When coupled with immutability, this separation o
interface and implementation becomes a powerful to
to control database size. Consider the AST examp
mentioned previously. An AST, when annotated wit
semantic information, is a large data structure that is n
obviously worth storing persistently in its entirety. For
tunately, we can easily establish the minimum amou
that must be stored: the source component from whi
the AST was generated, any ASTs that correspond
imported (included) source components, the to
responsible for the AST generation, and any enviro
mental information, such as the target machine,4 upon
which the generation depended. Since, by definitio

1. The public interface provides this as a text string that
encodes the database, segment and offset.

2. This is particularly true for C++ code because language
semantics makes it difficult to share information from
include files.

3. C++ does not treat abstract base classes specially, and so
implementations actually penalize their use.

4. Represented, of course, as a component.



e

her
age
ct
no

e
er-
nce
in
r-

he
an
m
r-

pect
a
ng
-

or-
s,
nd
on
he
e-
er

e,
te
s-
v-
to
to

n
r-
le

to
ith
-

k-
y

these dependent components are immutable, references
to these components are all that need be stored persis-
tently. The full AST can be generated in transient mem-
ory on demand, and cached in a table keyed by its
abstract value (fingerprint).

At the other extreme we might choose to store the entire
AST persistently. Abstract base classes, combined with
ObjectStore’s pointer transparency, leave clients
unaware of this transition, other than possible delays
when the AST must be regenerated in transient memory.
Evidently we have reduced this problem to a classic
space-time trade-off. Indeed, it is possible to create both
kinds of components in the same database and therefore
measure the trade-off for a given processor/network/disk
combination, all other factors being held equal. Given
the continuing divergence in processor and disk speeds,
generating infrequently used data on demand in tran-
sient memory seems a sound strategy. Note that in either
case the same amount of virtual memory is required for
the AST; either it is mapped from the database or allo-
cated transiently by the process.

5.6 Garbage Collection

The high degree of sharing and the concurrent nature of
data access makes manual storage management imprac-
tical in a Forest database. Fortunately the configuration
management framework makes automatic garbage col-
lection a practical possibility. First we must explain the
different ways in which garbage can occur in a database.
Although most components are immutable, there are
exceptions.

• Derived components that result from building a
package version can be discarded at will since, by
definition, they can be recreated reliably from
source components when needed.

• Building typically creates garbage in the form of
intermediaries, for example components analogous
to compiler intermediate files. These become gar-
bage because they are not reachable from any pack-
age.

• Users can delete old package versions, causing
some source components, modulo sharing, to
become garbage. Since this is a potentially danger-
ous operation, and since derived components domi-
nate storage costs, it is not clear that source deletion
is really necessary.

Garbage collection is currently supported by reference
counts on components. Reference counting of derived
components is mostly handled automatically by the sys-
tem builder. However, editors and other tools that
manipulate structured components, such as the version-
ing system, are required to handle reference counting

manually. The reference counting interface is part of th
Component class, but the implementation is private
and could be altered without affecting clients.

Since components may reference components in ot
databases, we have, in general, a distributed garb
collection problem. Each database occupies a distin
piece of the 128-bit wide address space, so there is
conceptual difficulty in garbage collecting a larg
enough portion of this address space to bound all int
database references. Note that manipulation of refere
counts and garbage collection are the only ways
which a distributed update transaction can occur in Fo
est. Given that the system builder is based on t
abstract value of immutable components rather th
uids, and that we can copy any package version fro
one database to another at will, it is not clear that inte
database references should be encouraged. We ex
that a group of collaborating programmers will share
single database, and we postulate that sharing amo
larger groups might be served best by copying. How
ever, this a matter for further research.

6 Safety

The shared memory model creates the potential for c
ruption by rogue applications of critical data structure
for example, those that underpin the folder structure a
versioning system,. The solutions are either to aband
the shared memory model or to rely on the safety of t
programming language in which the system is impl
mented. Cedar [15] is a classic example of the latt
approach.

The potential for corruption is real, since C++ is unsaf
but ObjectStore provides some mechanisms to mitiga
this. For example, a program fault is caught and tran
lated into an exception that aborts the transaction, lea
ing the database unscathed. It is also possible
leverage the type information stored with the database
check the validity of pointers prior to committing a
modified page.

In the long term we would prefer a safer implementatio
language. Compiler support for safe C++ [16], with ga
bage collection for transient objects, would be a viab
alternative.

7 Performance Measurements

Although we have not yet put the prototype system in
everyday use, early indications are encouraging. W
no tuning at all, the prototype performs quite ade
quately. We intend to develop the prototype into a wor
ing system that we will use ourselves for everyda
development.



to
is
ti-

a-
ore

nd
i-
s.

ng
only
e
ts
be
s,
is
cli-
es

to
w
ve
kin
m
n

t a
n
res
m.

-
ed
-
ta
nd
.

d
y.
-
e
-

e
d

he
k
the
ess

d-
Meanwhile, in order to estimate the performance of the
environment in real use, we have developed a test pro-
gram that simulates a user performing a set of editing
operations. The test database, characteristic of a typical
medium-sized project, contains approximately 2500 text
components, mostly C++ source files, imported from a
UNIX file system. These are distributed among 216 pack-
ages, each of which corresponds to a directory in the file
system. The initial size of the database is approximately
18Mb.

The program simulates a user checking out a package at
random, choosing a random number of components of
that package to edit, editing them (by making copies),
checking the package in, and repeating this process for a
given number of iterations. Unlike real users, the test
program performs edits in zero time and so provides a
somewhat more stressful test than would occur in real
use.

Each instance of the program simulates one user. By
running the program on several machines, all accessing
a shared database on the server, we can discover how the
system scales as users are added. In particular we can
measure the effect of making each package a uid genera-
tor. All times are wall clock since, in a distributed sys-
tem, that is the only measurement of relevance to users.

The experiments were run on dual-processor SPARCsta-
tion 10 client machines with 64Mb of memory, con-
nected by a 10 Megabit Ethernet® to a six-processor
SPARCcenter 2000 running a beta version of the
ObjectStore 4.0 database server. The database was
stored in aUNIX file, a convenient feature of Object-
Store, but one that obviously limits performance in com-
parison to storing the database on a raw disk.1 Client
cache size, the amount of virtual memory available for
mapping in database pages, was set to the default value
of 8Mb. For this benchmark, which only accesses about
0.5Mb of data, the cache size is not an issue.

The results break down the run time into six activities:
initial scan, checkout, checkin, analyzing and construct-
ing a newBuildableFolder , reading the text com-
ponent data, and writing it back in the new component.
Each of these operations is implemented as an indepen-
dent transaction to maximize the potential for concur-
rency. The initial scan walks the top-level folder
structure and counts the number of packages. As a side-
effect this partially warms each client cache. Table 1
shows the results when the database contains a single
uid-generator. These clearly confirm that contention for
write access to data is disastrous in the distributed
shared memory model. For operations that require

object creation, it is as if each new client adds its load
every other client machine. In other words, no benefit
accrued from distributing the processing among mul
ple client machines.

Table 2 shows the effect of distributing the uid gener
tion amongst the packages. These results are much m
encouraging. In particular the sum of the checkout a
write times only doubles as we go from one to eight cl
ents, because of the much lower contention for lock
The consistent times for the scanning and readi
phases indicates that the database server is affected
slightly by read-only clients and that the client sid
caching is effective. Clearly, as the number of clien
increases, the probability that the same package will
chosen for editing by more than one client increase
and this does indeed occur during this experiment. Th
causes more communication between the server and
ents in order to reclaim locks, and therefore increas
the real-time delay for the affected client.

As noted earlier, the critical measure is the time taken
write back modified components and check in a ne
package version. In this experiment an average of fi
components are modified in each checkout/edit/chec
cycle. The time to commit the updates ranges fro
approximately five to twelve seconds. For the commo
case, a modification to one file, the results sugges
range of two to five seconds. While we would prefer a
upper bound on the order of one second, these figu
are acceptable given the prototype nature of the syste

8 Related Work

The Vesta system [12] [17] [18] [19] clearly demon
strated that configuration management could be plac
on a firm foundation through the use of immutable com
ponents and modular system modelling. The Ves
repository, however, remained essentially file-based, a
was implemented on top of an existing file system
Tools (bridgesin Vesta parlance) were still required to
pickle language level objects into repository files an
the caches for the builder were also stored in this wa
Much of the implementation was concerned with imple
menting key transactional operations in terms of th
underlying file-system. The OODB infrastructure pro
vides this directly, while also supplying more flexibility
and extensibility, and a consistent object model from th
top-level structure of the repository to the fine-graine
structure used by tools. To illustrate the leverage of t
OODB, it is stated in [18] that the Vesta repository too
less than one person year to implement. In contrast
Forest configuration management subsystem took l
than one person month to build.

Vesta was itself influenced by the Cedar System Mo1. ObjectStore can also store databases on a raw file system.



le-
ed
ry

d,
c-
is

an
ts.
in
d.

ent
g
es

ism
is

Table 1: Simulation Results with a Single UID Generator

Number of Concurrent Users

Operation 1 2 3 4 5 6 7 8

Initial Scan 36a

a. Measurements are in seconds of wall clock time for 25 iterations.

40 39 44 45 53 57 106

Checkout 21 39 94 114 155 157 195 226

Checkin 16 36 83 92 123 172 179 217

Folder Edit 24 60 92 141 152 153 180 242

Read 29 31 29 30 30 32 30 33

Write 105 162 372 526 682 814 940 1145

Table 2: Simulation Results with Multiple UID Generators

Number of Concurrent Users

Operation 1 2 3 4 5 6 7 8

Initial Scan 44a 43 42 44 48 52 60 65

Checkout 21 26 27 37 49 51 60 76

Checkin 16 16 21 24 22 26 28 31

Folder Edit 21 23 26 30 34 37 37 44

Read 30 30 30 31 32 34 33 37

Write 98 109 127 134 136 181 186 222

a. Measurements are in seconds of wall clock time for 25 iterations.
eler [20]. The Cosmos [21] project also bases its config-
uration management on immutable objects.

PCTE [1] includes a database management system,
OMS [22], which provides an entity-relationship model
with object-oriented extensions, but it was not designed
to support fine-grained components. The PACT project
[23] developed configuration management services on
top of OMS.

ClearCase® [24] and DSEE [25] both support a ver-
sioned file system withviews to select particular ver-
sions in individual user contexts. Both support
integrated system building. Clearcase is a hybrid sys-
tem, storing some data in conventional files but storing
versioning information and other attributes, some of
which can be user-defined, in a database.

Magnusson et. al. [26] describe a revision control sys-

tem for fine-grained, tree-structured, documents imp
mented with a client-server model and a specializ
database. Their storage model for documents is ve
similar to our scheme forBuildableFolders ,
except that their documents are strictly tree-structure
whereas our import components produce graph-stru
tured configurations. Because our versioning system
independent of component type, we believe that it c
be re-used to represent arbitrary versioned documen
We share their view that a change to an internal node
a document requires the entire document to be revise

ObjectStore also provides generic version managem
for arbitrary C++ objects, using a binary differencin
mechanism for deltas between versions. Referenc
(pointers) to other objectsfloat to an appropriate version
as pages are mapped in, based on a selection mechan
that is similar to the view selection of ClearCase. Th



e
an
p-
rts

e
l
t to
or-
-

the
ft-
e
e

er-
eve
a-

er-
in

n.
a
.

ect
s
of
n

ed
ed

-

g
n-
contrasts with the immutable configuration bindings that
characterize the Vesta approach. In addition, checkout/
checkin is tied to a hierarchy of workspaces, with the
understanding that changes will eventually propagate
from the leaves to the root of the hierarchy. This
approach, often referred to as thecopy-modify-merge
model, is also taken by Teamware [27], which uses a
combination of whole directory trees and SCCS [28]
files to represent a configuration. In contrast the Vesta
approach tries to minimize the need for copy-modify-
merge by using modularization and interfaces between
subsystems. We conjecture that both approaches have a
role to play in configuration management, but with
copy-modify-merge best restricted to fine-grained com-
ponents for which modularization is not applicable.

Onodera [29] describes experience representing fine-
grain C++ program information in a database, also using
ObjectStore. The results show that a more global
approach to storing information on multiple programs
does reduce overall space requirements. It is also noted
that pointer-based structures are inherently less space
efficient than the tight encodings in current file formats.
We believe that our approach of separating interface and
implementation and the judicious use of transient
objects, can maintain an interface that is convenient for
programming yet space efficient in the database.

Baker [30] has argued that functional objects can sim-
plify the construction of distributed and parallel compu-
tations, and his conclusions echo many of the ideas of
the Vesta approach.

9 Conclusions

We have described the design and implementation of a
prototype modern configuration management system. It
follows the approach pioneered by Vesta, but is imple-
mented on a commercially available object-oriented
database.

Our experience suggests that transacted data, combined
with typed, immutable components, provide an excel-
lent basis for a software development environment.
Many problems of scale that were experienced by earlier
efforts can be solved by the pervasive application of
incremental techniques. These are made possible by the
combination of immutability and abstract interfaces to
objects.

Our performance measurements suggest that it is no
longer necessary to build a special purpose repository to
support an SDE, and that the current generation of
object-oriented databases can provide an adequate infra-
structure, provided applications pay appropriate atten-
tion to object clustering.

10 Future Plans

Our future plans are mainly in two areas. First, w
intend to evolve the prototype into a system that we c
use for everyday programming, including the develo
ment of the system itself. Our current prototype suppo
an experimental evolution of C++ [31], which afforded
us the luxury of designing the compiler to exploit th
database directly. A working system for ANSI C++ wil
be somewhat more constrained, but we expect at leas
replace the use of ad hoc file databases for derived inf
mation. For unmodifiable tools, Vesta’s bridge tech
niques [17] are directly applicable.

The second area of research is to expand and exploit
use of fine-grained components in all areas of the so
ware development environment. We plan to investigat
the integration of structured document editors with th
configuration management system. We are also int
ested in exploiting component abstract values to achi
build-avoidance at a finer grain, using the basic mech
nisms of the system builder.

11 Acknowledgments

Jon Gibbons designed and implemented a prototype v
sion of the Forest component system. Ted Goldste
designed theDBNewPlace interface. Roy Levin pro-
vided helpful insight and discussions on Vesta.

12 Trademarks

Ethernet is a registered trademark of Xerox Corporatio
Microsoft is a registered trademark and Windows is
trademark of Microsoft Corporation. Object Design Inc
and ObjectStore are registered trademarks of Obj
Design Inc. Solaris is a trademark of Sun Microsystem
Inc. SPARCstation and SPARCcenter are trademarks
SPARC International, Inc., licensed exclusively to Su
Microsystems Inc.UNIX is a registered trademark in the
United States and other countries, exclusively licens
through X/Open, Ltd. ClearCase and Atria are register
trademarks of Atria Software, Inc.

13 References

[1] An Overview of PCTE and PCTE+, Gerard Boud
ier, Ferdinando Gallo, Regis Minot and Ian Tho-
mas,Proceedings of the ACM/SIGSOFT Software
Engineering Symposium on Practical Software
Development Environments, Boston, Massachu-
setts, November 1988, 248-257.

[2] Types and Persistence in Database Programmin
Languages, Malcom P. Atkinson and O. Peter Bu
eman,ACM Computing Surveys 19,2 (June 1987)



.
e

d

m

-
-

s-
-

e

105-190.

[3] The ObjectStore Database System, Charles Lamb.
Jack Orenstein and Dan Weinreb, Communications
of the ACM4,10 (October 1991) 50-63.

[4] The Annotated C++ Reference Manual, Margaret
A. Ellis and Bjarne Stroustrop, Addison-Wesley,
Reading, Massachusetts, 1990.

[5] Make−A Program for Maintaining Computer Pro-
grams, Stuart I. Feldman,Software--Practice &
Experience9,3 (March 1979) 255-265.

[6] The Common Object Request Broker: Architecture
and Specification, Object Management Group,
Document No. 91.12.1, 1991.

[7] Inside OLE 2, Kraig Brockschmidt, Microsoft
Press, ISBN 1-55615-618-9, 1994.

[8] A Simple and Efficient Implementation for Small
Databases, Birrel et al.,Proceedings of the Elev-
enth ACM Symposium on Operating System Prin-
ciples, August 1987.

[9] A Study of Pickling Emphasizing C++, Daniel
Craft, Olivetti Software Technology Laboratory
Technical Report STL-89-2, September 1989.

[10] An Extensible Programming Environment for
Modula-3, Mick Jordan,Proceedings of the Fourth
ACM SIGSOFT Symposium on Software Develop-
ment Environments, Irvine, California, December
1990, 66-76.

[11] Smalltalk-80, The Language and its Implementa-
tion, Adele Goldberg and David Robson, Addison-
Wesley, Reading, Massachusetts, 1983.

[12] The Vesta Approach to Configuration Manage-
ment, Roy Levin and Paul McJones, DEC Systems
Research Center TR 105, June 1993.

[13] Some applications of Rabin’s fingerprinting
method, Capocelli et al. (ed),Sequences II: Meth-
ods in Communication, Security and Computer
Science, Springer-Verlag, New York, 1991.

[14] Design, Implementation, and Evaluation of a Revi-
sion Control System, Walter F. Tichy, Proceedings
6th International Conference on Software Engi-
neering, Tokyo, Japan, September 1982, 58-67.

[15] A Structural View of the Cedar Programming
Environment, Daniel C. Swinehart, Polle T. Zell-
weger, Richard J. Beach and Robert B. Hagmann,
ACM Transactions on Programming Languages
and Systems 8,4 (October 1986) 419-490.

[16] Safe, Efficient Garbage Collection for C++, John
R. Ellis and David L. Detlefs,USENIX C++ Con-
ference Proceedings, Cambridge Massachusetts,
April 1994, 143-177.

[17] Bridges: Tools to Extend the Vesta Configuration
Management System, Mark R. Brown and John R
Ellis, DEC Systems Research Center TR 108, Jun
1993.

[18] The Vesta Repository: A File System Extension
for Software Development, Sheng-Yang Chin an
Roy Levin, DEC Systems Research Center TR
106, June 1993.

[19] The Vesta Language for Configuration Manage-
ment, Christine B. Hanna and Roy Levin, DEC
Systems Research Center TR 107, June 1993.

[20] Practical Use of a Polymorphic Applicative Lan-
guage, Butler W. Lampson, and Eric E. Schmidt,
Conference Record of the Tenth ACM Symposiu
on Principles of Programming Languages, Austin,
Texas, January 1983, 237-255.

[21] A Unifying Model for Consistent Distributed Soft-
ware Development Environments, J. Walpole, G.
S. Blair, J. Malik and J. R. Nicol, Proceedings of
the ACM/SIGSOFT Software Engineering Sympo
sium on Practical Software Development Environ
ments, Boston, Massachusetts, November 1988,
183-190.

[22] The Object Management System of PCTE as a
Software Engineering Database Management Sy
tem, Ferdinando Gallo, Regis Minot and Ian Tho
mas,Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, Palo Alto,
California, December 1986, 12-15.

[23] Configuration Management in the PACT Softwar
Engineering Environment, Ian Simmonds,Pro-
ceedings of the 2nd International Workshop on
Software Configuration Management, Princeton,
New Jersey, October 1989, 118-121.

[24] ClearCase Concepts Manual, Atria Software,
1992.

[25] Computer-Aided Software Engineering in a Dis-
tributed Workstation Environment, David B. Leb-
lang and Robert P. Chase, Jr.,Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, Pittsburgh, Pennsylvania, April
1984, 104-112.



[26] Fine-grained Revision Control for Collaborative
Software Development. B. Magnusson, U. Ask-
lund, S. Minör, Lund Institute of Technology,
Department of Computer Science, LU-CS-TR:93-
112.

[27] CodeManager User’s Guide, Sun Microsystems
Inc., Part No. 801-2169-11.

[28] The Source Code Control System, Marc J. Roch-
kind, IEEE Transactions on Software Engineering,
SE-1,4 (December 1975) 364-370.

[29] Experience with Representing C++ Program Infor-
mation in an Object-Oriented Database, T.
Onodera,Proceedings Object-Oriented Program-
ming Systems, Languages, and Applications, Port-
land, Oregon, October 1994, 403-413.

[30] Equal Rights for Functional Objects or, The More
Things Change, The More They Are the Same,
Henry G. Baker,ACM OOPS Messenger 4,4
(October 1993) 2-27.

[31] The Clarity Language Definition, Mick Jordan et.
al. (ed) Sun Microsystems Laboratories, Technical
Report:in preparation.


	Abstract
	1 Introduction
	2 Why a Database?
	2.1 Transactional Store
	2.2 Precise Data Modelling

	3 ObjectStore
	4 Configuration Management in Forest
	4.1 Components
	4.2 Projects
	4.3 Packages and BuildableFolders
	4.4 Fine-grain Components
	4.5 Uids and Abstract Values
	4.6 Copy or Share?

	5 Storage Management and Locking
	5.1 Allocation Mechanisms
	5.2 Allocation Policy
	5.3 Uid Generation
	5.4 Locking
	5.5 How much to Store Persistently?
	5.6 Garbage Collection

	6 Safety
	7 Performance Measurements
	8 Related Work
	9 Conclusions
	10 Future Plans
	11 Acknowledgments
	12 Trademarks
	13 References
	[1] An Overview of PCTE and PCTE+, Gerard Boudier, Ferdinando Gallo, Regis Minot and Ian Thomas, ...
	[2] Types and Persistence in Database Programming Languages, Malcom P. Atkinson and O. Peter Bune...
	[3] The ObjectStore Database System, Charles Lamb. Jack Orenstein and Dan Weinreb, Communications...
	[4] The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrop, Addison-Wesley, ...
	[5] Make-A Program for Maintaining Computer Programs, Stuart I. Feldman, Software--Practice & Exp...
	[6] The Common Object Request Broker: Architecture and Specification, Object Management Group, Do...
	[7] Inside OLE 2, Kraig Brockschmidt, Microsoft Press, ISBN 1-55615-618-9, 1994.
	[8] A Simple and Efficient Implementation for Small Databases, Birrel et al., Proceedings of the ...
	[9] A Study of Pickling Emphasizing C++, Daniel Craft, Olivetti Software Technology Laboratory Te...
	[10] An Extensible Programming Environment for Modula-3, Mick Jordan, Proceedings of the Fourth A...
	[11] Smalltalk-80, The Language and its Implementation, Adele Goldberg and David Robson, Addison-...
	[12] The Vesta Approach to Configuration Management, Roy Levin and Paul McJones, DEC Systems Rese...
	[13] Some applications of Rabin’s fingerprinting method, Capocelli et al. (ed), Sequences II: Met...
	[14] Design, Implementation, and Evaluation of a Revision Control System, Walter F. Tichy, Procee...
	[15] A Structural View of the Cedar Programming Environment, Daniel C. Swinehart, Polle T. Zellwe...
	[16] Safe, Efficient Garbage Collection for C++, John R. Ellis and David L. Detlefs, USENIX C++ C...
	[17] Bridges: Tools to Extend the Vesta Configuration Management System, Mark R. Brown and John R...
	[18] The Vesta Repository: A File System Extension for Software Development, Sheng-Yang Chin and ...
	[19] The Vesta Language for Configuration Management, Christine B. Hanna and Roy Levin, DEC Syste...
	[20] Practical Use of a Polymorphic Applicative Language, Butler W. Lampson, and Eric E. Schmidt,...
	[21] A Unifying Model for Consistent Distributed Software Development Environments, J. Walpole, G...
	[22] The Object Management System of PCTE as a Software Engineering Database Management System, F...
	[23] Configuration Management in the PACT Software Engineering Environment, Ian Simmonds, Proceed...
	[24] ClearCase Concepts Manual, Atria Software, 1992.
	[25] Computer-Aided Software Engineering in a Distributed Workstation Environment, David B. Lebla...
	[26] Fine-grained Revision Control for Collaborative Software Development. B. Magnusson, U. Asklu...
	[27] CodeManager User’s Guide, Sun Microsystems Inc., Part No. 801-2169-11.
	[28] The Source Code Control System, Marc J. Rochkind, IEEE Transactions on Software Engineering,...
	[29] Experience with Representing C++ Program Information in an Object-Oriented Database, T. Onod...
	[30] Equal Rights for Functional Objects or, The More Things Change, The More They Are the Same, ...
	[31] The Clarity Language Definition, Mick Jordan et. al. (ed) Sun Microsystems Laboratories, Tec...
	Table 1: Simulation Results with a Single UID Generator
	Table 2: Simulation Results with Multiple UID Generators



