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Abstract interest and development in object-oriented database
(OODB) technology. While the relational database com-

The task of configuration management for softwaremunity might argue that OODBs are fated to repeat the
development environments is not well supported by conperceived failure of the network databases of the 1970's,
ventional files, directories, and ad hoc persistence mectthere is no doubt that the better impedance match with
anisms. Typed, immutable objects combined witheveryday programming has a great appeal to many
ubiquitous versioning provide a much more sound basisdevelopers. Indeed one can argue that OODBs are
A prototype configuration management system curbvbecoming successful because they are delivering, in
rently under development relies upon persistent objectpart, the promise of persistent programming languages
provided by a commercial object-oriented database sy§2].
tem. Mechanisms and policies developed for this proto-

S . X : . ~ This paper describes our experience building a proto-
type simplity programming with persistent ObJeCts’t e configuration management system using Object-
results include simplicity of both design and implemen- yp 9 9 Y g &b

tation. as well as flexibility, and extensibility, Initial StO'C . [3 & commercial database system produced by

measurements suggest that performance is acceptable.Object Design Iné:

We begin by reviewing the advantages of an OODB as
infrastructure for an SDE and then provide an overview
of the essential facilities provided by ObjectStore. Next
A practical software system consists of hundreds okye briefly describe the structure and operation of our
thousands of separate but related components. A SOfbonfiguration management system and exp|ain how
ware development environment (SDE) must help mangbjects help simplify both design and implementation.
age this collection by providing configuration e then turn to the mechanisms and policies that we
managemenservices. Closely related iersion man-  have developed to exploit ObjectStore successfully in
agementoften associated with tracking the evolution of our prototype, many of which have wide app||cab|||ty
individual components. However, configurations natu-aAfter presenting some preliminary performance mea-
rally exist as versions, and it is the effective managesurements we describe related work and discuss our
ment of such configurations that distinguishes a trulyconclusions and future plans.

useful SDE for large, multi-user projects.

An SDE typically relies on the persistent storage facili-2 Why a Database?

ties provided by the underlying operating system, UsUs . yiionaily an SDE is built on top of a file system. The
ally in the form of a file system with two basic

mechanisms: files and directories. Unfortunately themema1 caused by existing file-based tools makes it quite

weak functionality of these primitives does not permitdn‘flcult to change this situation, and any database solu-

" . . ; tion must provide a way to integrate legacy tools. Mean-
adequate m_odelllng of conﬂgurat!ons. This has led towhile progress in tools continues, and the limits of file-
the suggestion that an SDE rely instead on a databasgzased systems are being pushed. In particular, it is
management system (DBMS) [1]. i y

increasingly common to find ad hoc “databases” being
Experience with SDEs built using traditional DBMS added to file based SDEs. Examples include data to sup-
technology has not been encouraging. Indeed such sygort browsing, C++ [4] template instantiation, and build
tems have acquired a reputation for being resource hurstate formake[5]. Managing these ad hoc persistent
gry, and they have not found their way into widespreadstores, particularly in the face of concurrent access, is
use. However, in recent years there has been a surge dffficult and error prone. Yet, there is no shortage of

1 Introduction



object-based systems offering solutions, for example3 ObjectStore
CORBA [6] and Microsoft OLE 2 [7]. However, . _ . .
although these systems provide varying degrees of supc—)bJeCtStOre 'S®a com_mercu?%y e_lvallable QOD.B that
port for persistent data, they currently do not scale to thdNs undeunix ™ and Microsolt” Windows. It is prima-
task of supporting an SDE efficiently. In contrast, rily targeted to the C++ language, but support for_ Small_—
OODBs have matured to the point that we believe it jstalk [L1] has been added receg?t_ly. our eXpe”gnce 1S
practical to deploy them as an alternative to file systems‘{v ith the C++ system for the Solafigariant ofUNIX™.
and ad hoc persistence mechanisms. The impedance match between ObjectStore and C++ is
An OODB offers two main advantages over a file sys_generally very goqd. Objects are allocated in a database
tem as infrastructure for an SDE: by overloaded variants of the C+iagperator new.
« A transactional store, and In consequence a_JI objects _in the database can be refer-
- Precise modelling of application data. enced by C++ pointers. ObjectStore transparently maps
portions of the database into the address space of the
. C++ process, using virtual memory mapping primitives
2.1 Transactional Store of the underlying operating system. Access to objects in

All updates to a database take place inside a transactioff}€ database must occur inside a transaction, and any
they either complete in their entirety or not at all. There-Pointers that are mapped within that transaction are not
fore the evolution of data in a database proceeds through@lid after it terminates. Multiple processes may access
a sequence of well-defined states. Furthermore, datf® Same database, and ObjectStore enforces a multiple
modified in a transaction by one process is not visible tg'€@der-single writer locking policy.

other processes until the transaction commits. PI’OVidingNithin these Constraints, and inside a transaction’
such a guarantee for a file-based system is substantialinanipulation of database objects is no different from
harder* While the transactional property might be seenmanipulating virtual memory (heap) objects, and it is
as a minor feature in a single user programming envithijs feature that makes use of the database transparent.
ronment, it is extremely important in large, multi-user However, to avoidock conflictswith other processes it
projects. Even in single user environments, the use ofs necessary to limit the time spent in each transaction.
multiple processes can easily put data into an inconsisa |ock conflict occurs when one process holds a write
tent state, for example should a process abort at an inopock and another process requests a read or write lock,

portune moment. or vice versa; this delays the requesting process until the
lock is relinquished. Since locks are acquired only as
2.2 Precise Data Modelling data is accessedgeadlockcan occur when access pat-

) N ) ) terns produce cyclic lock dependencies. In case of dead-
We believe that the capability to design objects thaliscy one transaction is automatically aborted and

closely model the application domain is the more Sig”if'subsequently retried up to a user-defined maximum
icant benefit of an OODB. File based systems are hamg , per of times.

pered by the performance and modelling discontinuities

that occur at the file and directory boundaries. An!n order to retain access to an object between transac-
OODB can provide a more consistent solution. In partic-fions, it is necessary to use an ObjectStaference a

ular, there are substantial advantages to be gained frofind of heavyweight pointer. Unless some care is used
utilizing fine-grain objects: objects too small to be tO minimize the use of references, much of the transpar-
stored efficiently as individual files. That all objects are €ncY is lost. We will discuss this issue in more detail in
also typed significantly improves the readability and S€ction 5.4.

rellablllty of programs that manipulate them. Traditional ObjectStore is based on a client-server model. Data-
solutions to storing fine-grain objects in a file systempases are managed by a server process on a designated
involve pickling schemes [8] [9], whereby programming server machine. Client processes, typically on separate
language objects are preserved in some way inside on@achines, communicate with the server to read and

or more files. Although this can work well for simple write data. Client-side caching is heavily used to mini-
structures, it rapidly becomes unwieldy for the complex,mize communication overhead.

linked structures that prevail in compilers and associate%\ . .
tools [10]. process can access multiple ObjectStore databases

within a transaction, and database objects can contain
references to objects in other databases. An update
transaction that modifies data in multiple databases
anaged by different servers is implemented by a two-

1. A transactional file system would provide such a guaranteer.n
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Figure 1. Architectural Layers in Forest
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We currently do not use ObjectStore’s other features,
such as querying, collections library, and generic ver-
sion management. Our primary interest is in exploiting

the shared, distributed, and transacted virtual memor{yP€; We restrict components to be a subclass of an
model provided by the basic infrastructure. abstract C++ clas€omponent , which defines a com-

mon set of operations and attributes.

Figure 2. Abstract Example of a Forest Project

It is possible to construct arbitrarily complex collections
} ) . of components, connected in an OODB, much more eas-
Our configuration management system is part ofalargeﬂy than one can with a file system. In practice, we

project, Forest, that aims to prov?de an integrated,_multi-enfOrce some familiar high level structure, partly to
user, software development environment for medium tQqet the goals of the configuration management system

large scale systems programming. A major goal of FOr-yng partly for administrative and engineering reasons.
est is to discover whether current OODB technology is

up to the task.

4 Configuration Management in Forest

_ _ 4.2 Projects
The goal of the configuration management system is to

support the precise specification of a software Systen{:omponents_are aIIoca_ted in an.d belong for their life-
that may occur in many versions and variants. It must bdime to aproject A project physically groups related
capable of dealing with a spectrum of object types, fromcomponents and, as the name |mplles, is intended to be
very small objects that might represent a fragment of sShared by a group of collaborating programmers. A
source program through to structured objects that mighPreject is similar to a disk volume or mounted file sys-
represent a complete system build containing thousand&™m and is implemented as a single ObjectStore data-
of objects. Intermediate in this spectrum are objects thapase: Components in one project may refer to those in
represent object modules, programs, etc. In file-basegnother, but only through special components called
systems the structure of these kinds of objects is typilinks.

cally defined by dile format.In object-based systems At the outer level a project looks very like a conven-
we expect such objects to be defined increasingly asional file system. A roofolder (analogous to a file sys-
abstract object types. tem directory) can contain other folders or arbitrary
Figure 1 suggests how services are provided by differenfomponents. Two particular component typeackage
architectural layers of the prototype. and BuildableFolder are the essence of the configura-
tion management system; we will now describe these in
more detail. Figure 2 suggests how these are related in
practice.

Since the term object is rather overloaded, we use the

term componento denote the objects that are manipu-

lated by the Forest configuration management system.

Although ObjectStore can store instances of any C++; e use the terms “project” and “database” interchangeably.

4.1 Components




4.3 Packages and BuildableFolders Folder, which initially shares the components con-

tained in the folder that was the subject of the checkout
operation. The package components, which can be of
‘arbitrary type, are then evolved by appropriate editors.

Forest follows the Vesta [12] approach to configuration
management. A project contains a collection of hetero

geneoussource componen_ts, _organized i_nto families We use the ternevolvedrather tharmodifiedto empha-
calledpackageseach of which is arranged into a tree of size that any editing must take place on copies. We

versions. Source components_ are so-called because thSXpect editors to exploit the immutability provided by
cannot be generated automatically by the system. Userg . system and share as much as possible of original

typically create source components using tools such aéomponents when constructing codes
editors. However, a binary program that is imported into '

the database from elsewhere is also a source componefpordination of component editors is overseen by a spe-
in this context. All other components, i.e. those that carcial editor for a BuildableFolder; this editor

be generated automatically by the system,dedved  ensures, amongst other things, that the entire folder is
Components, once created, are immutable. Tools used &Rved as a group, thus versioning the entire configura-
construct derived components are themselves modelledon. Once a version is saved, which involves commit-

as components and versioned in the same way. Systen#i§g any new components to the database, it can be built.
are built by executing a functional program irsgstem  Therefore, it is important that the group save operation
modellinglanguage. These properties provide the baside fast, in user time, and our experience with the data-
for reliable and repeatable system builds. base is positive in this regard. Eventually a version of

this checkout b h, lly the lastcisecked irb
Unlike Vesta, in which the package structure is hard- IS Checkollt branch, usually the fasteiecked rby

. ot . reating a new version on the main branch. This
wired, a Forest package is just a partlcular_ subtype 0f:nvolves no copying or building, since it merely serves
the Component ch_‘;l_ss. The op_erat|0ns available on ag: associate a new version hame with the same folder.
package are specified as ordinary C++ methods, an
each executes as a transaction. A package version can . .
bind any subtype ofComponent , although to date we 4.4 Fine-grain Components
have not exploited this flexibility. Variations of the pack- gome components in ®uildableFolder have

age type could be defined (for example to implementnternal structure that is made visible through the inter-
different organizations of versions), as indeed couldiace to the component. Since this structure corresponds
quite different structures, and all could coexist in theig the sub-file granularity in a file-based system, we
same database. This flexibility and extensibility is onerefer to such components dime-grain Most current

of the clear benefits of the OODB approach. program editors are text-based, so typical source com-

Following Vesta, the component type that we currentlyponents are not structured, but we expect this to change
bind to a package version is a special kind of containe@s object-based systems and compound documents
that we call aBuildableFolder . This is similartoa become more widespread. In contrast, it is somewhat
file system directory, in that it contains a set of heteroge-£asier to represent derived components, those created by
neous (source) components. However, it also plays a kelols during a system build, as structured objects by way
role in the system building process in that it is aitsput ~ Of wrappers and similar techniques. In Forest, these are
to the system builder. In this role Buildable- defined as appropriate subtypes of tBemponent
Folder acts as a module in the system modelling lan-class, tailored to model the abstract objects they repre-
guage. The source components act as constant valuégnt.

that are the inputs to the algorithm that computesgq, example, we specify the input to the parser for a
(builds) the system. Large systems are built up by CONprogramming language asT@kenSequence compo-
necting package versions together using iamport  nent that represents a sequence of tokens in that lan-
mechanism. The essential feature of the import mechaguage_ This component might be produced by a lexer
nism is that it is not intensional; eadBuildable- from a text component or it might be manipulated
Folder precisely and permanently identifies the Otherdirecﬂy by a language sensitive editor. Either way, the
folders that it imports. The details of the system mOde"parser, as well as all downstream tools in the compila-
ling process are beyond the scope of this paper; theon pipeline, are only interested in the elements of the
mechanisms are similar to those described for Vesta, bibken sequence, and are unconcerned that it might be
the details are rather different. derived from or be part of another component. This pre-

Development typically proceeds by the us#recking

outthe latest version of a package. This produces a neW Thjs assumes that components are structured so that unmod-
branch on the version tree and a né&uwildable- ified substructure is shareable.




cise modelling of the compilation pipeline provides oper share the same environment with respect to the
opportunities to avoid certain phases. For example, aependencies of the copied system, no rebuilding is nec-
change to a comment or other annotation, such as assary because, even though the copied components will
graphic, in the original source component, would only have different uids, the abstract values of the compo-

require re-lexing. nents will not have changed. If, on the other hand, the
client uses a different version of the compiler, then the
4.5 Uids and Abstract Values affected components will be rebuilt transparently; the

system takes full responsibility for the construction and
Two particularly important attributes of a component arejocation of derived components.
its uid and itsvalue Each component is assigned a glo-
bally unique identifier (uid) that denotes it for all timhe.
The uid acts much like a pointer or reference in a pro-

The ability to share components reliably has two major
benefits. First, it permits components to be constructed

gramming language. Forest uids are 128 bits wide, pa ‘:‘] |n_cre|_”ne_|ntalt rrgrc:dlflcatlpns rt](.) ;X'St'ng pompo?ents.
of which encodes the database in which the componen IS 1S simifar o the way In which versioning systems

is allocated. The uid provides a guaranteed way to ideng'uch as RCS [14] use "diffs” to encode changes to text

tify a component, in contrast to the facilities offered by I!IeS’IbUtc'jt dqtlffers b}k;.?emg proactive rtatther than r;:troac—
theunix file system. The uid also provides a sure way to V€. In addition, arbitrary component types can be con-

determine if two references are to the same object. strugted mgrementally n t_he Forest -enV|ronment,
leaving details to component implementations. The sec-

However, uid comparison sometimes draws too fine and benefit is the ability to share large derived compo-
distinction. Two components with different uids may in nents such as programs, libraries, or entire subsystems
fact represent the same abstract value, for example thgmong many versions and many users. This can dramat-
same sequence of tokens in ti®kenSequence ically reduce overall storage requirements, making the
component of the previous section. The abstract valugystem competitive or better than current file-based
attribute is represented byfengerprint[13]. A finger-  environments.

print is an opaque bit sequence, similar to a hash code,
that encodes value probabilistically. Two componentsg
with the same value have the same fingerprint. Con-
versely, if two components have different values, thenWe turn now to the implementation of the configuration
with extremely high probability, they have different fin- management system, and in particular to the impact
gerprints? Each component implementation can provide ObjectStore has on the Forest/C++ programmer. This is
its own definition of the value attribute; the default, felt in two main areas: storage management and data
inherited, implementation uses the uid, which is safe butocking. We will describe the mechanisms and policies
conservative. Fingerprints can be combined efficientlythat we have developed to minimize this impact.

which is how the abstract value of structured compo-

nents is computed. Component implementations are freg 1 Allocation Mechanisms

to cache the fingerprint or compute it on demand. The _ _ _ _

system builder deals with components through theirAs noted earlier, objects are allocated in an ObjectStore

abstract values because, in the system modelling larflatabase using overloaded variants of the Gpera-

guage, object equality is defined as equality of abstractor new . The C++ language permits optioralace-
values. mentarguments tonew;  ObjectStore uses these to

control where in the database an object is allocated,
using two basic placement abstractiossgmentsand
clusters

Storage Management and Locking

4.6 Copy or Share?

The combination of immutability and abstract value pro- gegments support large scale structuring of the database
vides many benefits, not least the freedom to copy 0G4ng provide hooks for various policies to improve per-
share components at will. For example, a system that iy mance. For example, whole segments can be trans-

built in a database at a developer site can be copied t0 & red from the server in one request. Segments can be
database at a client site. Provided that client and develc-)f unlimited size.

A segment can be divided into clusters, which are essen-
appeared atomic to all clients, but the difficulty in locating tlaIIy_ abstraF:t p?ﬁes. .A.clustet; has a mlnlmumorzl)r_ld ta
all references makes this impractical. maximum size, the minimum being one page. ject-

2. The probability can be increased by adding more bits to theStore’s locking is actually page-based, so objects in dif-
fingerprint representation; we use 64. ferent clusters cannot cause lock conflicts. Clusters also

1. In principle the uid could change, provided the change



provide for locality of reference for groups of small derived components are allocated in a fresh segment. So
objects. Since clusters have a maximum size, a clientoncurrent builds of different versions of the same pack-
must always be prepared for an allocation request to failage also cannot conflict. Should two programmers be
requiring the cluster to be extended or a new one to bevorking on different branches (versions) of the same
allocated. Objects larger than the maximum cluster sizgpackage, conflict can occur while creating new source
cannot be allocated in a cluster at all. components. However, this happens in user-time, and
Ithe lock is only held for the time it takes to write the new
fomponent. If such conflicts proved to be problematic, it
data into a C++ class calle@BNewPlace. Although would be relatively straightforward 'Fo allocate extra seg-
this successfully encapsulates the ObjectStore placépems' for example, for each version b“fi”Ch- Only the
code that creates new package versions would be

ment information, a client must still acquire or generate ftocted by this ch - odit 4 oth tat
an instance of this class in order to allocate any objects:.i ected by this change, editors and other mutators

Fortunately ObjectStore provides enquiry methods thaiNoUId simply inherit the appropriate placement.

return the cluster or segment in which an existing objectOwing to the size constraints, we find clusters much less
is allocated. Provided such an object is at hand, it is easyseful than segments; we use clusters only for compo-
to generate @BNewPlace that will cause allocation nents whose size we can predict with confidence.

with the same placement. In practice, almost all objects

are as;ociated with some container objec_t, ar_ld aIIoca5_3 Uid Generation

tion with the same placement as the container is usually

the right thing to do. Since such allocations typ|ca||y The most Significant hot spot in the database is the data
take place inside a method of the container object, th&tructure that deals with uids. At a minimum thext-
C++this  pointer can be used to generate the placeuid value must be updated each time a component is cre-
ment. In cases wherethis pointer is not available, ated. The data structures that provide a mapping from a
such as static member functions, RBNewPlace uid to the associated component are also potential hot
instance must be passed as an explicit argument. spots. Evidently this data must be clustered separately,
otherwise read-only navigation of the database will
immediately conflict with mutating.

It would be unworkable for each allocation site to deal
with all these issues, so in Forest we abstract placeme

5.2 Allocation Policy
In fact, as the measurements in section 7 show, the con-

TgetDBtNeV\;EIacle class t[:)'rofwdest.the tr)n (techr?msm fgr flicts that arise when multiple processes are mutating the
abstracting the placement Information, but Wno providesy 556 quickly cause serious performance problems.
the policy? Our experience bears out Object Design

NS T '9NSro address this problem we have made it possible for
advice: un]ess this is carefully planned, lOCk. Cor'ﬂ'CtS’uid generation to be distributed amongst components in
poor locality of rgfergnce, and consequent madequatctahe database. Rather than hard-wire a particular distribu-
performance are inevitable. tion, any component type can opt to be a uid-generator
The versioned, mostly immutable nature of a Forestby inheriting and implementing th&lidGenerator
database is of considerable help in establishing appranterface. This interface defines a protocol that permits a
priate policy. By design, conflict can only occur on the hierarchy of components to collectively manage the uid
mutable components that represent the leading edge @pace in one database.

development. Recall that development by an |nd|V|duaIInitially the only uid generator is at the root component,

user takes place on a package. Often two or more p""CKK/hich also serves as the entry point to a dataBase.

ages may be involved, for example a p_ack_age that proéomponent can register with the root and acquire a por-
V|d_es a library (.)f code _and an apphcaﬂon _packggetion of the uid space that it then manages. Any compo-
which uses the I|brar_y. Different |nd|V|dua!s will ty_p|- nent can be asked for its uid-generator. Since allocation
cally be Wo_rkmg on different packages, ultimately inte- and uid generation go together, we extend IfRNew-
grating their work by way of packages that denotePlace class to carry both the database placement and
subsystemé. uid-generator instance. There are no constraints on how
Each Forest package is allocated in a separate segmeat,component implements thdidGenerator inter-

so all source components in all versions of the packagéace; the protocol provides for the enumeration of the
are allocated together. Lock conflicts thus cannot arise&omponents under its control. In principle this hierarchy
from modifications to different packages. In addition, could be of any depth. In practice, we have only used a
when a particular version of a package is built, all newdepth of two, by making each package be a uid genera-

1. Vesta coined the terombrella packagédor this purpose. 2. It acts like ¥ " in the UNIX file system.



tor that registers with the root component. 5.5 How much to Store Persistently?

The contention caused by the uid structures could b@ne reason that database-based environments have a
avoided by binding our implementation more tightly to reputation for storage excess is that the data structures
ObjectStore, since each persistent C++ object has gssociated with compilers and related tools can be very
unique persistent addreSdsdowever, an initial goal of large. A good example is a program represented as an

the project was to avoid too much dependence on impleapstract Syntax Tree (AST). Another is the debugging
mentation details of any one database, hence our owjnformation in typicalunix object files2

uid layer. Since the uid representation is hidden from
Forest clients, we should be able to perform this optimi-
zation in the future. Nevertheless, the uid structure ig"
just a particular example of amdex which occur
repeatedly in database applications. A consequence of
the distributed shared memory model is that such indi-The second mechanism, discussed earlier, deserves fur-
ces are certain hot spots if the update frequency is highther emphasis. The intrinsic immutability of Forest com-

ponents enables common structure to be shared,
5.4 Locking confident in the knowledge that it cannot change.

Forest solves this problem with two distinct mecha-
isms:

» Separation of interface and implementation; and

« Aggressive sharing of substructure.

Careful clustering and distributed uid generation doesThe value of physically separating interface and imple-

much to alleviate the potential for lock conflicts in For- mentation S well undef?toodl|n :Ee acl:)iract data t_);pe
est, but it does not permit the programmer to ignore thProgramming communtties. - in the community

issue completely. In particular, any process that involve§)hys"c"’II separart:on bg/ way of ?b?rgct base classes '3
user-interaction or indeterminate delay cannot be under<cOMMOnN, perhaps because of lliciency concerns an

taken inside a transaction without the risk of locking outPoOr language and compiler SUpme a database con-

another process. In Forest, this issue manifests itse@th.’b.(la.Tclﬁnfy tc);otncetht a;e clearly ;;cogdaryt o the
most obviously in the user interface to the configuration exibiity that abstract Interlaces provide. Forest com-

management system. Much user activity involvesPonents are defined and accessed through interfaces
browsing the package structure, using read-only transac,qef'ned as C++ abstract base classes. These abstract

tions, with occasional bursts of editing and building thatInterfaces ?hOW no implementation detail: all methpds
require update transactions. are pure virtual, and no data members are permitted.

The implementor enjoys complete freedom to represent
In order to avoid holding a read lock that might preventthe abstract state of the component in the most conve-
an update, user-interface code must use short transagient way. The actual implementation takes the form of
tions for database navigation. Pointers that represery class that is derived from the abstract class and con-
navigational context must be converted to ObjectStorgains the physical data members.

references, which were alluded to in section 3. Object-Wh led with i tability. thi i f
Store provides a variety of reference types, with varying. €n coupied with immutabiiity, this separation o
interface and implementation becomes a powerful tool

costs and functionality. All are represented in C++ ast trol datab : Consider the AST |
template types and behave ligmart pointergo the real 0 control database size. Lonsider the example

object type. For the most part this fiction succeeds, bu[nentloqeq prewogsly.. An AST, when annotated .Wlth
the C++ type system sometimes falls short. For examSemantic information, is a large data structure that is not

ple, if Bis a derived class oA, then aB* is assignable obviously worth storing persistently in its entirety. For-

to anA*. However, there is no such relation between alUnately, we can easily establish the minimum amount

DBRef<B> and aDBRef<A>, whereDBRef<T> is a :Eatxsuft be stored: tth(cej sourczsc_?mﬁ?ntent from ng(f[h
reference to a typE. e was generated, any s that correspond to

_ _ _ imported (included) source components, the tool
One particular trap for the unwary involves closing aresponsible for the AST generation, and any environ-
transaction within a method of an Ob]eCt whadbes mental information, such as the target mac[‘ﬁnmon

pointer becomes invalid when the transaction ends. Thigyhich the generation depended. Since, by definition,
is analogous to sawing off the branch on which one is

sitting. The solution is to use functions or transient
objects to scope transactions.

2. This is particularly true for C++ code because language
semantics makes it difficult to share information from
include files.
3. C++ does not treat abstract base classes specially, and some
1. The public interface provides this as a text string that implementations actually penalize their use.
encodes the database, segment and offset. 4. Represented, of course, as a component.




these dependent components are immutable, referencasanually. The reference counting interface is part of the
to these components are all that need be stored persi€&omponent class, but the implementation is private
tently. The full AST can be generated in transient mem-and could be altered without affecting clients.

ory on demand_, and gached in a table keyed by "SSince components may reference components in other
abstract value (fingerprint). databases, we have, in general, a distributed garbage
At the other extreme we might choose to store the entireollection problem. Each database occupies a distinct
AST persistently. Abstract base classes, combined witlpiece of the 128-bit wide address space, so there is no
ObjectStore’s pointer transparency, leave clientsconceptual difficulty in garbage collecting a large
unaware of this transition, other than possible delaysenough portion of this address space to bound all inter-
when the AST must be regenerated in transient memorydatabase references. Note that manipulation of reference
Evidently we have reduced this problem to a classiccounts and garbage collection are the only ways in
space-time trade-off. Indeed, it is possible to create bothwhich a distributed update transaction can occur in For-
kinds of components in the same database and therefoest. Given that the system builder is based on the
measure the trade-off for a given processor/network/dislabstract value of immutable components rather than
combination, all other factors being held equal. Givenuids, and that we can copy any package version from
the continuing divergence in processor and disk speedgne database to another at will, it is not clear that inter-
generating infrequently used data on demand in traneatabase references should be encouraged. We expect
sient memory seems a sound strategy. Note that in eitha@hat a group of collaborating programmers will share a
case the same amount of virtual memory is required fosingle database, and we postulate that sharing among
the AST; either it is mapped from the database or allodarger groups might be served best by copying. How-
cated transiently by the process. ever, this a matter for further research.

5.6 Garbage Collection 6 Safety

The high degree of sharing and the concurrent nature ofhe shared memory model creates the potential for cor-
data access makes manual storage management impragption by rogue applications of critical data structures,

tical in a Forest database. Fortunately the configuratiofior example, those that underpin the folder structure and
management framework makes automatic garbage cokersioning system,. The solutions are either to abandon
lection a practical possibility. First we must explain the the shared memory model or to rely on the safety of the
different ways in which garbage can occur in a databaseprogramming language in which the system is imple-

Although most components are immutable, there arenented. Cedar [15] is a classic example of the latter
exceptions. approach.

» Derived components that' result from pwldmg a The potential for corruption is real, since C++ is unsafe,
package version can be discarded at will since, byt OpjectStore provides some mechanisms to mitigate
definition, they can be recreated reliably from yis For example, a program fault is caught and trans-
source components when needed. lated into an exception that aborts the transaction, leav-

* Building typically creates garbage in the form of g the database unscathed. It is also possible to

intermediaries, for example components analogougeyerage the type information stored with the database to
to compiler intermediate files. These become gar-

check the validity of pointers prior to committing a

bage because they are not reachable from any packs  ified page.

. 3%2}5 can delete old package versions, causinjj" the long term we would prefer a safer implementation
some source components, modulo sharing, tda@nguage. Compiler support for safe C++ [16], with gar-
become garbage. Since this is a potentially dangerb@ge collection for transient objects, would be a viable
ous operation, and since derived components domi@lternative.
nate storage costs, it is not clear that source deletion

is really necessary. 7 Performance Measurements

Garbage collection is currently supported by referencealthough we have not yet put the prototype system into
counts on components. Reference counting of derive@veryday use, early indications are encouraging. With
components is mostly handled automatically by the sysno tuning at all, the prototype performs quite ade-
tem builder. However, editors and other tools thatquately. We intend to develop the prototype into a work-
manipulate structured components, such as the versiofing system that we will use ourselves for everyday
ing system, are required to handle reference countinglevelopment.



Meanwhile, in order to estimate the performance of theobject creation, it is as if each new client adds its load to
environment in real use, we have developed a test proevery other client machine. In other words, no benefit is
gram that simulates a user performing a set of editingaccrued from distributing the processing among multi-
operations. The test database, characteristic of a typicalle client machines.

medium-sized project, contains approximately 2500 XIrable 2 shows the effect of distributing the uid genera-

components, mostly C++ source files, imported from Btion amongst the packages. These results are much more

UNIX file system. These are distributed among 216 paCkéncouraging. In particular the sum of the checkout and

ages, each of v_vhich_corresponds toa di_rectory in_the fiI‘?/vrite times only doubles as we go from one to eight cli-
system. The initial size of the database is apprommatehéms, because of the much lower contention for locks.

18Mb. The consistent times for the scanning and reading
The program simulates a user checking out a package ghases indicates that the database server is affected only
random, choosing a random number of components o$lightly by read-only clients and that the client side
that package to edit, editing them (by making copies),caching is effective. Clearly, as the number of clients
checking the package in, and repeating this process for imcreases, the probability that the same package will be
given number of iterations. Unlike real users, the testchosen for editing by more than one client increases,
program performs edits in zero time and so provides and this does indeed occur during this experiment. This
somewhat more stressful test than would occur in reatauses more communication between the server and cli-
use. ents in order to reclaim locks, and therefore increases

Each instance of the program simulates one user. B)tpe real-time delay for the affected client.

running the program on several machines, all accessings noted earlier, the critical measure is the time taken to
a shared database on the server, we can discover how theite back modified components and check in a new
system scales as users are added. In particular we cgrackage version. In this experiment an average of five
measure the effect of making each package a uid genera@omponents are modified in each checkout/edit/checkin
tor. All times are wall clock since, in a distributed sys- cycle. The time to commit the updates ranges from
tem, that is the only measurement of relevance to usersapproximately five to twelve seconds. For the common
Lase, a modification to one file, the results suggest a

tion[] 10 client machines with 64Mb of memory, con- range of two to five seconds. While we would prefgr an
nected by a 10 Megabit Etherfleto a six-processor upper bound on _the order of one second, these figures
SPARCcentdr] 2000 running a beta version of the are acceptable given the prototype nature of the system.

ObjectStore 4.0 database server. The database was
stored in auNix file, a convenient feature of Object- 8 Related Work

Stqre, but onet.hatobviously limits performanpe ?n COM-The Vesta system [12] [17] [18] [19] clearly demon-
parison to storing the database on a raw &lﬂ_djent strated that configuration management could be placed
cachg size, the amount of virtual memory available fory 5 firm foundation through the use of immutable com-
mapping in dqtabase pages, was set to the default Va|UE‘0nents and modular system modelling. The Vesta
of 8Mb. For this benchmark, which only accesses aboutgpgsitory, however, remained essentially file-based, and
0.5Mb of data, the cache size is not an issue. was implemented on top of an existing file system.
The results break down the run time into six activities: Tools ridgesin Vesta parlance) were still required to
initial scan, checkout, checkin, analyzing and constructpickle language level objects into repository files and
ing a newBuildableFolder , reading the text com- the caches for the builder were also stored in this way.
ponent data, and writing it back in the new componentMuch of the implementation was concerned with imple-
Each of these operations is implemented as an indeperenting key transactional operations in terms of the
dent transaction to maximize the potential for concur-underlying file-system. The OODB infrastructure pro-
rency. The initial scan walks the top-level folder vides this directly, while also supplying more flexibility
structure and counts the number of packages. As a sidénd extensibility, and a consistent object model from the
effect this partially warms each client cache. Table 1top-level structure of the repository to the fine-grained
shows the results when the database contains a singkéructure used by tools. To illustrate the leverage of the
uid-generator. These clearly confirm that contention forOODB, it is stated in [18] that the Vesta repository took
write access to data is disastrous in the distributedess than one person year to implement. In contrast the
shared memory model. For operations that requird-orest configuration management subsystem took less
than one person month to build.

The experiments were run on dual-processor SPARCst

1. ObjectStore can also store databases on a raw file systemVesta was itself influenced by the Cedar System Mod-



Table 1: Simulation Results with a Single UID Generator

Number of Concurrent Users

Operation 1 2 3 4 5 6 7 8
Initial Scan 362 40 39 44 45 53 57 106
Checkout 21 39 94 | 114 | 155 | 157 | 195 | 226
Checkin 16 36 83 92 | 123 | 172 | 179 | 217
Folder Edit 24 60 92 | 141 | 152 | 153 | 180 | 242
Read 29 31 29 30 30 32 30 33
Write 105 | 162 | 372 | 526 | 682 | 814 |940 1145

a. Measurements are In seconds of wall clock time for 25 iterations.

Table 2: Simulation Results with Multiple UID Generators

Number of Concurrent Users

Operation 1 2 3 4 5 6 7 8
Initial Scan 442 43 42 44 48 52 60 65
Checkout 21 26 27 37 49 51 60 76
Checkin 16 16 21 24 22 26 28 31
Folder Edit 21 23 26 30 34 37 37 44
Read 30 30 30 31 32 34 33 37
Write 98 | 109 | 127 | 134 | 136 | 181 | 186 |222

a. Measurements are In seconds of wall clock time for 25 iterations.

eler [20]. The Cosmos [21] project also bases its configtem for fine-grained, tree-structured, documents imple-
uration management on immutable objects. mented with a client-server model and a specialized
ngatabase. Their storage model for documents is very
Is’imilar to our scheme forBuildableFolders ,

£xeept that their documents are strictly tree-structured,
hereas our import components produce graph-struc-

PCTE [1] includes a database management syste
OMS [22], which provides an entity-relationship mode
with object-oriented extensions, but it was not designe
to support fine-grained components. The PACT projec

[23] developed configuration management services OII‘ured configurations. Because our versioning system is
top of OMS independent of component type, we believe that it can

be re-used to represent arbitrary versioned documents.
ClearCase [24] and DSEE [25] both support a ver- \we share their view that a change to an internal node in
sioned file system witlviewsto select particular ver- a document requires the entire document to be revised.
sions in individual user contexts. Both support _ . . . .

integrated system building. Clearcase is a hybrid sys—O bjectstore also prov ides generic version managem ent
tem, storing some data in conventional files but storing‘cor arbltrary C++ objects, using a bmgry differencing
versioning information and other attributes, some Ofmephamsm for de“‘.”‘s between Versions. Refer_ences
which can be user-defined, in a database. (pointers) to other objgcfk)atto an appropnqte version

as pages are mapped in, based on a selection mechanism

Magnusson et. al. [26] describe a revision control systhat is similar to the view selection of ClearCase. This



contrasts with the immutable configuration bindings that1Q Future Plans

characterize the Vesta approach. In addition, checkout/ _ : .
Our future plans are mainly in two areas. First, we

checkin is tied to a hierarchy of workspaces, with the. tend t e th ot it tem that
understanding that changes will eventually propagatén end o evolve the prototype into a system that we can

from the leaves to the root of the hierarchy. This use for everyday programming, including the develop-

approach, often referred to as teepy-modify-merge ment of the system itself. Our current prototype supports

model, is also taken by Teamware [27], which uses Aan experimental evolution of C++ [31], which afforded

combination of whole directory trees and SCCS [28] usttrz)e qu(;;_ry (?J dis'gm;_g the Ctoma"e;\tﬁ Selxgi_olt th”e
files to represent a configuration. In contrast the Vest atabase directly. A working system tor Wi

approach tries to minimize the need for copy-modify- e somewhat more constrained, but we expect at least to

merge by using modularization and interfaces betweer'ieplface the use of ac_l .hOC file databases’for d_erived infor-
subsystems. We conjecture that both approaches havenéat'on‘ For unmod|f|ab|e t.OOIS’ Vesta’s bridge tech-
role to play in configuration management, but with niques [17] are directly applicable.

copy-modify-merge best restricted to fine-grained com-The second area of research is to expand and exploit the
ponents for which modularization is not applicable. use of fine-grained components in all areas of the soft-

Onodera [29] describes experience representing finevare development environment. We plan to investigate

grain C++ program information in a database, also usin he i_ntegrqtion of structured document editors with_ the
ObjectStore. The results show that a more global onﬁggratlon _njanagement system. We are also mfcer-
approach to storing information on multiple programseSted in exploiting component abstract values to achieve

does reduce overall space requirements. It is also notelauld-av;)ltﬂance tat atf)mi; grain, using the basic mecha-
that pointer-based structures are inherently less spa&isms orthe system builder.

efficient than the tight encodings in current file formats.
We believe that our approach of separating interface and1 Acknowledgments
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