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Successful vector quantization of images depends on constructing suitable codebooks:
the quality of the final image depends critically on the quality of the codebook, and
codebook construction techniques can be very slow. This paper examines tradeoffs
between speed and quality of codebook-generation algorithms and offers new ways to
produce excellent codebooks with only modest computation cost.

This paper compares the performance of four algorithms for constructing code-
books. The LBG method [7] produces the best codebooks but requires the most
computation. The method by Equitz [2,3] produces codebooks nearly as good and
requires somewhat less computation. This paper describes a new method based on
eigenvector subdivision that produces useable codebooks in a fraction of the computa-
tional effort of either of the other methods. A fourth hybrid method yields very good
codebooks with modest computation by using the eigenvector subdivision method to
obtain a first approximation that is refined with LBG optimization.

Our eigenvector subdivision method divides the training set vectors into succes-
sively smaller sets based on the direction of the principal eigenvector of each subset.
After each subdivision, a new principal eigenvector is computed for each subset to
select a direction for the next subdivision. Because the principal eigenvector points
in the direction of greatest variance in the subset, subdivision normal to the principal
eigenvector breaks the subset into more nearly hyper-spherical pieces. When enough
subsets have been formed, the centroid of each subset is used as a codeword.

This paper also offers some insight into the content of codebooks. We show a
method for visualizing an n-dimensional codebook by drawing n? two-dimensional
projections. These projections show clearly how little variance there is in the code-
book in some directions, reflecting the small size of several eigenvalues of the training
set data. Ignoring the thickness of the training set data in directions with small
eigenvalues and assuming a uniform distribution in other directions leads to a simple
estimate of RMS encoding errors for a vector quantizer. This estimate agrees quite
well with measured RMS encoding errors.

1 Codebook geometry

Before turning to the algorithms, we first offer a pictorial view a codebook by plotting
all possible two-dimensional views. Figures 1 and 2 show plots of a 16-dimensional
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Figure 1: Visualization of a codebook for a 16-dimensional vector space. The plot
in row ¢ and column j plots values in the ith dimension against those in the jth
dimension. The figure at the right is an enlarged view of the upper left corner of the

figure at the left.
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Figure 2: Visualization of a codebook for a 16-dimensional vector space after rotation
by the Karhunen-Loéve transformation.
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vector quantizer codebook taken from a monochromatic image. Each 16-element
vector contains the pixel values from a 4 x 4 square patch: the first four elements in
the vector correspond to the top row of the patch, the next four to the next row, and
so on. Since there are 162 = 256 ways to choose two dimensions from 16 dimensions,
there are 256 two-dimensional views.

Figure 1 shows a codebook plotted with axes that correspond to the intensity of
particular pixels in the 4 x 4 patch. It is hard to make much out of this figure because
the coordinates correspond to individual pixels and thus the shape of the distribution
is concealed.

A better view of a codebook is obtained by first rotating the vector space so as to
emphasize the directions of greatest variation of the codebook vectors. The rotation
transformation, called the Karhunen-Lo&ve transformation, is obtained by measuring
the distribution of codewords by the eigenvectors and eigenvalues of its covariance
matrix. The principal eigenvector, i.e., the one with the largest eigenvalue, points in
the direction in which the distribution has greatest variance, and eigenvectors with
successively smaller values point in mutually perpendicular directions in which the
distribution has less and less variance. Thus the 16 eigenvectors represent the 16
orthogonal directions of a coordinate system that reveals the variance of the distri-
bution. The Karhunen-Loéve transformation rotates the original space so that these
directions are aligned with coordinate axes.

The shape of a codebook rotated by the Karhunen-Loéve transformation is clearly
evident in Figure 2. The axes are shown in order of decreasing eigenvalue: the first
dimension plotted is the direction of greatest variance in the data, the next dimension
is a direction orthogonal to the first with next greatest variance, and so on. The fact
that the distribution is long in one dimension and thin in others is quite evident. We
think of such distributions as n-dimensional almonds, because like an almond they
have a long axis, one or more medium length axes, and several short axes, and they
are rounded or pointed at their ends.

2 Four algorithms for making codebooks

2.1 LBG algorithm

The LBG algorithm involves iterative refinement of a trial codebook and splitting of
its codewords. Each refinement iteration has two steps, an encoding step and an
adjustment step. The encoding step involves assigning each training set vector to the
trial code vector closest to it, thus forming clusters, one associated with each code
vector in the trial codebook. The adjustment step moves the trial codeword to the
centroid of its cluster. To increase the number of codewords, one or more clusters
with large distortion are split in two parts, usually by introducing a new codeword
slightly displaced from the existing codeword.

A complete LBG algorithm applies the two-step refinement iteration and split-
ting a great many times. The algorithm must start with an initial trial codebook,
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and terminates when a refinement iteration fails to produce at least some minimal
improvement in RMS encoding error of the training set. Many choices of initial code-
book are possible. For example, purely random vectors or vectors chosen randomly
from the training set may be used. Alternately, the output from another algorithm
may be a good initial trial codebook [2].

The trouble with the LBG method is that it converges slowly. Because each re-
finement can only reduce the total distortion, the algorithm provably converges to a
local optimum, but not necessarily the global optimum. Each refinement iteration
produces a small improvement in the codebook but is slow because it must examine
all of the training set vectors. Despite its large computational cost, our experiments
indicate that the LBG algorithm routinely produces the best codebooks.

2.2 Equitz algorithm

Where the LBG algorithm builds up a codebook by adding codewords, the Equitz algo-
rithm reduces the size of the training set gradually to produce the required codebook.
The Equitz algorithm starts with the entire training set as a first approximation to the
codebook, and reduces it by successive approximations. Each iteration finds the pair
of vectors in the approximation that are closest together and combines them. The
definition of close together weights previously combined clusters according to how
many training-set vectors have been accumulated into them, so that “heavy” clusters
will combine only if closer together than “light” ones. The effect is to perform the
merge that will add the least distortion to the training set.

The algorithm hinges on a technique for finding the closest pair of vectors, which
could be an expensive task. The obvious exhaustive search to find the closest pair
of N vectors will require N? distance measurements. Equitz’s method uses a faster
approximation: he divides the training set into clusters of about 25 vectors each.
Thereafter, the search for a vector’s nearest neighbor is confined to the vectors in the
same cluster as the vector, so that only slightly more than 25N distance measurements
are required. The clusters are formed in a data structure called a k-d tree [1], which
recursively splits the training set into clusters separated by cut planes aligned with
a coordinate axis. We have developed a variant of Equitz’s approach that uses a
generalized k-d tree in which the cut planes are normal to the principal eigenvector
of the distribution being cut [8].

2.3 Eigenvector subdivision algorithm

When we looked at pictures of codebooks such as Figure 2, we imagined finding
clusters of training set data by recursively subdividing the data by cutting planes
normal to the principal eigenvector. This notion led to devloping the generalized
k-d tree [8] and a corresponding codebook-generation algorithm. A similar scheme,
using cut planes aligned with axes, was used by Heckbert to build quantizers for color
maps [6].
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We think of the eigenvector subdivision method in geometric terms. The principal
eigenvector of a distribution lies along its longest axis, so cutting the distribution
near its center and normal to its principal eigenvector makes two more nearly hyper-
spherical parts. If the principal eigenvalue is substantially larger than the next largest
eigenvalue, the distribution is cigar-shaped, i.e., long in one direction, and we can
expect more than one cut along nearly parallel planes, since cutting a long cigar in
half leaves two pieces each of which is still cigar-shaped. In fact, the training set data
we have examined using 4 X 4 squares of pixels as vectors is so highly correlated in
the direction of average gray shade that the first eight or more cuts in the eigenvector
method merely separate the data into groups of generally lighter and generally darker
vectors, i.e., they cut normal to the “gray” axis.

If the two largest eigenvalues are substantially equal but larger than the third, the
distribution is pancake-shaped. In this case it may be sensible to make two cuts at
once, one normal to each of the two largest eigenvectors, but little harm is done by
making them successively, as our programs do. The idea is always to cut in such a
direction as to make the subdivided pieces more nearly hyper-spherical.

The eigenvector subdivision method places the training set data into a subdivision
tree much like a k-d tree. Each subdivision, however, is made with a plane normal to
the principal eigenvector of the data being split. Each node in the tree indicates the
orientation and location of the cut plane and points to other tree nodes that further
separate the data. The result is much like a k-d tree except that the orientation of the
cut planes is data-dependent. In fact, our programs use the same code for eigenvector
trees as for classical k-d trees, with a parameter to say how the orientation of the
planes is to be selected. The algorithms for building and searching this kind of tree
are given in detail in [8].

The algorithm builds the subdivision tree of the training-set vectors until there are
as many leaf nodes as there are codewords in the required codebook. The centroid of
the training set vectors in each leaf node of this tree then becomes the corresponding
codeword.

The eigenvector method gives a rationale for selecting the orientation of each cut
plane, but its location along the eigenvector can be chosen in many ways. We have
experimented with two alternatives: pass the cut plane through the mean of the
distribution being cut, or cut at the median value so as to place the same number of
vectors on each side of the cut.

The eigenvector subdivision method for computing codebooks is very fast. It
is fast because its only iterative processes operate on a very small amount of data,
namely a covariance matrix. It is well adapted to run on vector processors because its
major calculations are large inner products across the training set data. It makes only
O(logN') passes on the training set data to compute a codebook of size N. Finally,
its output provides not only a codebook but also a set of subdivision planes suitable
for use in a fast cut-plane encoding method.
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2.4 Hybrid method

As we began to study the performance of the three algorithms described above, we
looked for a compromise between the quality of the codebook produced by the slow
LBG method and the speed of the eigenvector method. The obvious hybrid algorithm
uses the fast eigenvector technique to build an initial codebook that is refined by the
more accurate LBG algorithm. We ran several experiments in which the size of the
initial codebook varies, i.e., changing how much subdivision is done by the eigenvector
algorithm and how much splitting by the LBG algorithm. The hybrid technique is a
good compromise between speed and quality.

3 Encoding

The job of encoding, or quantizing, an image is to find, for each vector in the image,
the nearest codeword in the codebook. We have used two methods: a full search and
a faster but less accurate cut plane search.

A full search of a codebook with N codewords would at first seem to require
N distance measurements—an exhaustive linear search of the codebook. But if the
codebook is loaded into a k-d tree data structure—either the classical form with axis-
aligned cut planes or the form with cut planes normal to eigenvectors—the search is
much faster. The speed of searches using the two kinds of trees is explored in [8].

When the codebook is produced using the eigenvector method, the cut planes of
the subdivision tree that produced the codebook can be used to encode vectors. An
image vector to be encoded is compared to the cut plane at the root node of the tree
and the search proceeds to one of two child nodes depending on the relationship of the
vector to the plane, and so on down the tree. When a leaf node is reached, the code-
word associated with the leaf node is reported. Unlike full search, this technique does
not always locate the codeword nearest to the data vector, so larger distortion results.
In this respect, cut-plane searching is similar to tree searching of codebooks [5].

4 Experiments and results

To obtain credible performance measurements, we have coded all algorithms using
one programming environment and one coding style. The three programs are written
in C and use a common set of routines for accessing files, building and searching &-d
trees, doing vector computations, computing averages, and so forth. The programs
were written and debugged on a MicroVAX II and run against real data on a Cray
YMP. No vectorization was used on the Cray.

The training set data consisted of five images supplied to us by Tom Stockham
of the University of Utah. These images are called park, parkcity, station, train, and
tree; they have appeared in other experiments. Each image is 512 pixels by 512 pixels
in size carefully digitized from photographs. Each pixel is represented by a single 8-bit
value representing log intensity. We used 4 X 4 square patches of pixels as vectors.
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Table 1 summarizes experimental results. In each experiment we recorded the
number of Cray seconds required and the RMs distortion for full search encoding
the entire training set. For the eigenvector subdivision experiments we recorded also
the RMS distortion for the faster cut-plane encoding. The table shows results only
for codebooks with 1024 vectors; more complete results and discussion of algorithm
variants can be found in a companion report [9].

The eight eigenvector subdivision experiments include all combinations of three
binary variants. These are: (1) choice of which cluster to divide next, i.e., depth
first versus worst distortion first; (2) orientation of cut planes in the k-d tree, i.e., cut
planes running normal to eigenvectors versus cut planes normal to the coordinate axis
with maximum data variance; and (3) location of the cut plane, i.e., cut plane posi-
tioned at the mean location of the cluster versus located at the median location. The
best combination expands nodes with most distortion, uses eigenvector cut planes,
and places the cut plane at the median of the cluster.

The seven Equitz algorithm experiments explore various ways of building the &-d
tree used in its search: the size of buckets in terminal nodes of the tree, and the kind
of cut planes used in the tree. Variants can build a tree of the entire training set
(“infinite tiles”) or can limit the number of tiles in memory before merge steps are
performed. Not surprisingly, the least distortion is obtained when the entire training
set participates in the merge, with large buckets, and cut planes that match the
orientation of the data.

The LBG experiments differ in the settings of various parameters that control how
new codewords are formed. The split parameter is the fraction of existing codewords
that are candidates for splitting. The most interesting LBG experiment concerns
splitting: how should the two new code vectors be related to the location of the
code vector being split? In experiment 23 the codewords are aligned parallel to the
principal eigenvector of the cluster being split rather than aligned randomly, as in
all the other LBG tests. This not only reduces computing time by about 25% from
the corresponding random vector experiment, number 17, but also gives the best
codebook of any produced.

The final two experiments are hybrids. They both start with a codebook produced
by the eigenvector method and then refine it using the LBG method. Experiment 24
uses an eigenvector codebook of the correct size, simply refining it by the LBG method,
splitting codewords only when other codewords are deleted as too unpopular. It
produces results in the same class as other LBG codebooks in about 1/4 the computing
time. It is our best method in terms of its compromise between computing time and
codebook quality. The final experiment primes the LBG method with a 256-word
eigenvector codebook, but lets the LBG algorithm do further splitting. Again the
RMS error is clearly like those of the other LBG algorithms, but so is the computing
time. One should use the LBG algorithm to refine the location of codewords, not to
split them.
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Dim. | Eigenvalue | Square root | Running | (v/s)7" | (v/s)77 | (v/s)7"
n u ul/? product v | s =256 | s =1024 | s = 4096
1 31121.03 176.41 1.76 x 107 0.69 0.17 0.04
2 906.56 30.11 5.31 x 10° 4.56 2.28 1.14
3 750.37 27.39 1.45 x 10° 8.28 5.22 3.29
4 260.40 16.14 2.35 x 108 9.79 6.92 4.89
5 192.39 13.87 3.26x 107 | 10.49 7.95 6.03
6 169.65 13.02 424%x10° | 1088 8.63 6.85
7 83.88 9.16 3.88x10° | 10.61 8.71 7.14
8 67.45 8.21 3.19 x 101 | 10.28 8.64 727
9 60.02 7.75 247x 101 | 9.96 8.54 7.32
10 58.14 7.62 1.88 x 1012 | 9.70 8.44 7.35
11 28.23 5.31 1.00 x 103 9.18 8.09 7.14
12 26.88 5.18 5.19% 1013 | 8.76 7.80 6.95
13 21.76 4.66 242x 10 | 8.34 7.50 6.74
14 12.30 3.51 8.49 x 10 7.84 7.10 6.43
15 11.36 3.37 2.86x 1015 | 741 6.76 6.16
16 5.97 2.44 6.99 x 10! |  6.91 6.34 5.81

Table 2: Estimates of distortion for different codebook sizes. The inputs to the
computation are the sixteen eigenvalues in the second column. Underlined in the last
three columns are estimates of distortion for three different codebook sizes. Larger
codebooks populate more of the “dimensions” of the distribution and thus have lower
distortion.

5 A method for estimating codebook quality

The eigenvalues computed from a training set can be used to produce an estimate of
the distortion that a good codebook of size s will introduce when encoding the training
set. This estimate is based on a geometric argument and the fact that the eigenvalues
computed from a distribution tell quite a lot about its geometry. In particular, if
the distribution is a glob of data, perhaps extended in some directions more than in
others, the eigenvalues give us a way to approximate the volume of the glob. The
values in the second colurnn of Table 2 are the eigenvalues of the covariance matrix
of the training set vectors used in these experiments, sorted in order of decreasing
value. The third column gives their square roots so as to measure RMS distortion.
The product of square roots of the largest n eigenvalues, as shown in the next column,
is approximately the n-dimensional volume, v, of the glob in the n-dimensional space
of the corresponding eigenvalues.

A well-formed codebook of size s should fill the n-dimensional volume v. If we
assume that image vectors are evenly distributed throughout this volume (which
they are not), the codebook divides the volume v into s volumes of equal size, each
occupying volume v/s. Moreover, those volumes will be roughly hyper-spherical, and
so the average encoding error should be on the order of (v/s)!/", as shown in the
fourth column in Table 2. Notice that the numbers in this column increase to a
maximum and then decrease again.

The only question that remains is how many dimensions to consider for making an
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estimate of RMS error. In directions for which the square root of the eigenvalue is less
than the expected encoding error, the volume associated with a codeword will stretch
completely across the training set distribution. In other words, in such dimensions the
distribution is so thin that its thickness will no longer contribute to encoding errors.
We can thus ignore the effect of this and other dimensions with smaller eigenvalues.
Thus the maximum value in the column of predicted RMS errors in Table 2 is the one
to choose. These estimates compare quite well with distortions of actual codebooks.
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