

RASPunzel: A Novel RASP Solution

What is RASP?

Runtime Application Self-Protection Runtime (RASP) is a security mechanism that is built into

applications to protect themselves from attacks. RASP monitors the attack vectors of an application

and detects security events.

The team that manages the application can identify what are security threats they want the RASP

solution to handle. This is achieved without requiring the developer to modify their code to

accommodate a RASP tool. The security monitors are woven into the application at build time or at

runtime. Because no changes to the application development life cycle is required, RASP solutions are

relatively inexpensive to deploy.

There are various ways of deploying RASP solutions. In monitoring mode, a RASP tool will only report

the security event. The application team can then decide how to handle the reported event. In full

protection mode a RASP tool will prevent this security event from occurring. This can be achieved in

many ways including stopping the execution of the application, terminating the user’s session or

raising an exception for the current request. RASP solutions are configurable, and the application can

identify which events need to be reported and which events need to be blocked.

RASP solutions, unlike Web Application Firewalls (WAF) provide an application-aware level of

protection. A RASP solution can also analyse the severity of a security event by evaluating its impact

on the application. This could include change in the application’s configuration and exfiltration of

sensitive data. WAF-based solutions do not have this level of visibility of the application and can only

report on incoming requests. This makes RASP-based solutions more accurate and can reduce both

false positives and false negatives. NIST’s SP 800-53B recommends a state-of-the-art RASP solution.

How Does RASPunzel Work?

RASPunzel, unlike other RASP solutions, uses an allowlist approach to provide security. That is, the

security posture is about what is permitted rather than what is disallowed (or the deny-list approach).

From a security perspective, using deny-lists is challenging. Every new vulnerability requires the

security operations (or even the developer) to update the deny-list. This results in a whack-a-mole

approach to security. Using an allowlist provides a better security posture. Only legitimate behaviours

need to be identified. All behaviours not mentioned in the allow-list are reported and flagged. They

can also be prohibited. Hence an application protected by RASPunzel is not affected by newly disclosed

vulnerabilities unless the vulnerable behaviour happens to be permitted by the allowlist.

RASPunzel uses patented1 techniques to generate the allowlists automatically. RASPunzel has two

distinct phases. In the first phase the synthesis engine in RASPunzel is exercised via both permitted

and forbidden behaviours. This can be during the testing phase. This means that the application team

does not have to do any extra work to improve the security posture.

RASPunzel, generalises the permitted behaviours using the semantics of the defect type being

supported. For instance, to prevent SQL injections, RASPunzel uses an information flow semantics to

identify the consequences of the SQL query. RASPunzel’s information flow model allows fine-grained

control of information disclosure. For instance, even users who have access to the entire table may

not be able to disclose values from certain columns. At the end of the second phase RASPunzel

generates the allowlist. RASPunzel’s generalisation ensures that none of the forbidden behaviours are

permitted.

RASPunzel’s allowist list generation is context sensitive. A single security-sensitive operation could be

executed on different program paths. These program paths represent different usage contexts. Hence

each path to a security-sensitive operation will have its own allowlist. This is explained later via an

example.

RASPunzel also adopts a customer centric view. Each deployment of the application can have its own

customized security posture. This permits different allowlists based on the configuration and test

cases used. Those who manage the deployment of the application can influence the allowlist

generation via suitable tests.

RASPunzel has two ways to generate the security monitor based on the generated allowlist. The first

way is to weave the monitor at build time using the Graal Native Image2 system. The second is to

weave the monitor at runtime using a Java agent.

1 Patent applications under review.
2 https://www.graalvm.org/22.1/reference-manual/native-image/

In both cases, the woven monitor tracks the behaviour of the application. The monitors can be

configured to log, alert (e.g., to a SIEM system) or block behaviours that are not permitted by the

allowlist.

Simple Example

Consider a table, called movies, that has name, director, genre, release_year, and profit

as its columns and the query 'SELECT profit FROM movies WHERE (name = 'Iron Man 2')'

at a particular program point. On one execution path, the following allowlist is generated for the user

of the application:

Allowed disclosure: movies.name, movies.director, movies.genre,

movies.release_year, movies.profit

while on another execution path for another user, the following allowlist is generated:

Allowed disclosure: movies.name, movies.director, movies.genre,

movies.release_year, movies.profit

This demonstrates the contextual and fine-grained nature of RASPunzel’s information flow-based

allowlists.

When the first path is executed, RASPunzel reports

 Executing trusted query 'SELECT profit FROM movies WHERE (name = 'Iron Man

2')'

This is because the disclosure of the column profit is permitted by the allowlist. However, when

the second path is executed, RASPunzel, in alerting mode, reports

 ALERT: Executing untrusted query 'SELECT profit FROM movies WHERE (name = 'Iron

Man 2')'

The query is invalid on this path because the disclosure of the column profit is not permitted by the

generated allowlist.

Autonomous RASPunzel

Another important aspect of RASPunzel’s design is the autonomous nature of updating the allowlists3.

Because RASPunzel monitors the execution of the application, it can gather real observations. These

observations can be used to refine the existing allowlist to obtain a more precise and accurate

allowlist. Thus RASPunzel automatically keeps improving the context specific protection it synthesised

initially.

The allowlist generation and the monitoring of the application are seamless and require very little or

no developer/user interaction. This allows RASPunzel to be deployed in a seamless fashion.

The high-level architecture is shown in Figure 1.

Figure 1: Architecture of RASPunzel

The main benefits of RASPunzel are:

1. Real-time protection: RASPunzel can detect malicious behaviour such as deviant and

potentially malicious deserializations (including JNDI-based attacks such as Log4Shell) and SQL

injections.

2. RASPunzel has full visibility of the application. Hence its security alerts have full context of

deviant behaviour.

3 This feature will be forthcoming soon.

3. RASPunzel has a fine-grained information flow-based protection mechanism which is context-

sensitive and customer centric.

4. RASPunzel can protect against both known and unknown attacks as only permitted behaviour

will pass the monitor.

5. RASPunzel can protect against zero-day exploits. If the zero-day exploit is not related to the

allowlist, no change is required. The application remains protected against this exploit. If the

allowlist is impacted by the exploit, it can be updated to have an upated allowlist. RASPunzel

gives time to the development team to patch the application.

6. The RASPunzel monitors are suitable for both standard Java web applications as well as cloud

native applications that leverage the Graal Native Image technology.

7. Easily integrable in a DevSecOps system.

