Explore concepts used in the Oracle Cloud Infrastructure Data Science service to speed up your workflow and make you more productive.
Workshop length: 4 hours
Oracle 19c Hands-On Upgrade Workshop (PTS)
Autonomous Database Quick Start
Machine Learning on Autonomous Database
Choose how you want to run this workshop.
About This Workshop
The Oracle Cloud Infrastructure Data Science service is a fully managed, self-service platform for data science teams to build, train, and manage machine learning (ML) models in Oracle Cloud Infrastructure. This lab will introduce the Accelerated Data Science SDK, showing you how it can speed up your workflow and make you more productive. In this module, we will build a binary classification model in an effort to predict employee attrition. Using the Accelerated Data Science (ADS) SDK we will do an exploratory data analysis (EDA) to understand the nature and distribution of the data. We will visualize the data and assess the correlation between predictors. The Oracle AutoML tools will be used to perform and automatically tune Light Gradient Boosting Machine (GBM), XG Boost, Random Forest and Logistic Regression classifiers. These models will be evaluated and compared using ADS' model evaluation tools. Once the best model is selected, we will use the machine learning explainability (MLX) tools to explain the global and local behavior of the model. That is, we will see what features are important in the model using feature permutation importance, partial dependence plots (PDP), individual conditional expectation (ICE) and several other methods used to determine why the model made the prediction that it did.
Workshop prerequisites:
The URL for this workshop has been copied to the clipboard.
Share a link to this workshop via:
The QR code below is the URL for this workshop. Right-click to save the image to share with others.